Bibliography#

[1]

Hirokazu Anai, Frédéric Chazal, Marc Glisse, Yuichi Ike, Hiroya Inakoshi, Raphaël Tinarrage, and Yuhei Umeda. Dtm-based filtrations. In Nils A. Baas, Gunnar E. Carlsson, Gereon Quick, Markus Szymik, and Marius Thaule, editors, Topological Data Analysis, 33–66. Cham, 2020. Springer International Publishing. URL: https://doi.org/10.4230/LIPIcs.SoCG.2019.58, doi:10.1007/978-3-030-43408-3_2.

[2]

Gérard Biau, Frédéric Chazal, David Cohen-Steiner, Luc Devroye, and Carlos Rodríguez. A weighted k-nearest neighbor density estimate for geometric inference. Electron. J. Statist., 5:204–237, 2011. URL: https://doi.org/10.1214/11-EJS606, doi:10.1214/11-EJS606.

[3]

Jean-Daniel Boissonnat, Tamal K. Dey, and Clément Maria. The compressed annotation matrix: an efficient data structure for computing persistent cohomology. In ESA, 695–706. 2013. URL: http://dx.doi.org/10.1007/978-3-642-40450-4_59, doi:10.1007/978-3-642-40450-4_59.

[4]

Jean-Daniel Boissonnat and Arijit Ghosh. Manifold reconstruction using tangential delaunay complexes. Discrete & Computational Geometry, 51(1):221–267, 2014. URL: http://dx.doi.org/10.1007/s00454-013-9557-2, doi:10.1007/s00454-013-9557-2.

[5]

Jean-Daniel Boissonnat and Clément Maria. The simplex tree: an efficient data structure for general simplicial complexes. Algorithmica, pages 1–22, 2014. URL: http://dx.doi.org/10.1007/s00453-014-9887-3, doi:10.1007/s00453-014-9887-3.

[6]

Mickaël Buchet, Frédéric Chazal, Steve Y. Oudot, and Donald Sheehy. Efficient and robust persistent homology for measures. Computational Geometry: Theory and Applications, 58:70–96, 2016. URL: https://doi.org/10.1016/j.comgeo.2016.07.001, doi:10.1016/j.comgeo.2016.07.001.

[7]

Gunnar E. Carlsson and Vin de Silva. Zigzag persistence. Foundations of Computational Mathematics, 10(4):367–405, 2010. URL: https://doi.org/10.1007/s10208-010-9066-0, doi:10.1007/s10208-010-9066-0.

[8]

Mathieu Carrière, Bertrand Michel, and Steve Oudot. Statistical analysis and parameter selection for Mapper. Journal of Machine Learning Research, 19:1–39, 2018. URL: https://jmlr.org/papers/v19/17-291.html.

[9]

Mathieu Carrière and Steve Oudot. Structure and stability of the one-dimensional Mapper. Foundations of Computational Mathematics, 18(6):1333–1396, 2017. URL: https://doi.org/10.1007/s10208-017-9370-z, doi:10.1007/s10208-017-9370-z.

[10]

Nicholas J. Cavanna, Mahmoodreza Jahanseir, and Donald R. Sheehy. A geometric perspective on sparse filtrations. In Proceedings of the Canadian Conference on Computational Geometry. 2015. URL: https://arxiv.org/abs/1506.03797.

[11]

Nicholas J. Cavanna, Mahmoodreza Jahanseir, and Donald R. Sheehy. Visualizing sparse filtrations. In Proceedings of the 31st International Symposium on Computational Geometry. 2015. URL: https://doi.org/10.4230/LIPIcs.SOCG.2015.23, doi:10.4230/LIPIcs.SOCG.2015.23.

[12]

Frédéric Chazal, Leonidas J. Guibas, Steve Y. Oudot, and Primoz Skraba. Persistence-based clustering in riemannian manifolds. J. ACM, November 2013. URL: https://doi.org/10.1145/2535927, doi:10.1145/2535927.

[13]

Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric inference for probability measures. Foundations of Computational Mathematics, 11(6):733–751, 2011. URL: https://doi.org/10.1007/s10208-011-9098-0, doi:10.1007/s10208-011-9098-0.

[14]

Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, and Larry Wasserman. Subsampling methods for persistent homology. 2014. URL: https://arxiv.org/abs/1406.1901, doi:10.48550/ARXIV.1406.1901.

[15]

Vin De Silva and Gunnar Carlsson. Topological estimation using witness complexes. Proc. Sympos. Point-Based Graphics, pages 157–166, 2004. URL: https://doi.org/10.2312/SPBG/SPBG04/157-166.

[16]

Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Persistent cohomology and circular coordinates. Discrete & Computational Geometry, 45(4):737–759, 2011. URL: https://doi.org/10.1007/s00454-011-9344-x.

[17]

Olivier Devillers, Samuel Hornus, and Clément Jamin. dD triangulations. In CGAL User and Reference Manual. CGAL Editorial Board, 5.0 edition, 2019. URL: https://doc.cgal.org/5.0/Manual/packages.html#PkgTriangulations.

[18]

Tamal Dey, Fengtao Fan, and Yusu Wang. Graph induced complex on point data. In Proceedings of the Twenty-ninth Annual Symposium on Computational Geometry, 107–116. 2013. URL: https://doi.org/10.1016/j.comgeo.2015.04.003, doi:10.1145/2462356.2462387.

[19]

Tamal K. Dey, Fengtao Fan, and Yusu Wang. Computing topological persistence for simplicial maps. In Symposium on Computational Geometry, 345. 2014. URL: https://doi.org/10.1145/2582112.2582165, doi:10.1145/2582112.2582165.

[20]

Herbert Edelsbrunner and John Harer. Computational Topology - an Introduction. American Mathematical Society, 2010. ISBN 978-0-8218-4925-5. URL: http://www.ams.org/bookstore-getitem/item=MBK-69.

[21]

Alon Efrat, Alon Itai, and Matthew J. Katz. Geometry helps in bottleneck matching and related problems. Algorithmica, 31(1):1–28, 2001. URL: https://doi.org/10.1007/s00453-001-0016-8.

[22]

Marc Glisse and Siddharth Pritam. Swap, Shift and Trim to Edge Collapse a Filtration. URL: https://arxiv.org/abs/2203.07022.

[23]

T. Kaczynski, K. Mischaikow, and M. Mrozek. Computational Homology. Applied Mathematical Sciences. Springer New York, 2004. ISBN 9780387408538. URL: https://books.google.fr/books?id=AShKtpi3GecC.

[24]

Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. Geometry helps to compare persistence diagrams. J. Exp. Algorithmics, 22:1.4:1–1.4:20, September 2017. URL: http://doi.acm.org/10.1145/3064175, doi:10.1145/3064175.

[25]

Théo Lacombe, Marco Cuturi, and Steve Oudot. Large scale computation of means and clusters for persistence diagrams using optimal transport. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, 9792–9802. Red Hook, NY, USA, 2018. Curran Associates Inc. URL: https://proceedings.neurips.cc/paper/2018/hash/b58f7d184743106a8a66028b7a28937c-Abstract.html.

[26]

James R. Munkres. Elements of algebraic topology. Addison-Wesley, 1984. ISBN 978-0-201-04586-4.

[27]

Martin Royer, Frédéric Chazal, Clément Levrard, Yuichi Ike, and Yuhei Umeda. Atol: measure vectorisation for automatic topologically-oriented learning. 2019. arXiv:1909.13472.

[28]

Donald R. Sheehy. Linear-size approximations to the Vietoris-Rips filtration. Discrete & Computational Geometry, 49(4):778–796, 2013. URL: https://doi.org/10.1007/s00454-013-9513-1, doi:10.1007/s00454-013-9513-1.

[29]

Katharine Turner, Yuriy Mileyko, Sayan Mukherjee, and John Harer. Fréchet means for distributions of persistence diagrams. Discrete & Computational Geometry, 52(1):44–70, 2014. URL: https://doi.org/10.1007/s00454-014-9604-7, doi:10.1007/s00454-014-9604-7.

[30]

Hubert Wagner, Chao Chen, and Erald Vucini. Efficient Computation of Persistent Homology for Cubical Data, pages 91–106. Mathematics and Visualization. Springer Berlin Heidelberg, 2012. URL: http://dx.doi.org/10.1007/978-3-642-23175-9_7, doi:10.1007/978-3-642-23175-9_7.

[31]

Afra Zomorodian and Gunnar E. Carlsson. Computing persistent homology. Discrete & Computational Geometry, 33(2):249–274, 2005. URL: https://doi.org/10.1007/s00454-004-1146-y.

[32]

The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.0 edition, 2019. URL: https://doc.cgal.org/5.0/Manual/packages.html.