Structure representing coefficients in a set of finite fields simultaneously using the chinese remainder theorem.  
 More...
#include <include/gudhi/Persistent_cohomology/Multi_field.h>
Structure representing coefficients in a set of finite fields simultaneously using the chinese remainder theorem. 
Details on the algorithms may be found in [6] 
- Examples
 - rips_multifield_persistence.cpp.
 
 
◆ inverse()
  
  
      
        
          | std::pair< Element, Element > Gudhi::persistent_cohomology::Multi_field::inverse  | 
          ( | 
          Element  | 
          x,  | 
         
        
           | 
           | 
          Element  | 
          QS  | 
         
        
           | 
          ) | 
           |  | 
         
       
   | 
  
inline   | 
  
 
Returns the inverse in the field. Modifies P. ??? 
 
 
◆ plus_times_equal()
  
  
      
        
          | Element Gudhi::persistent_cohomology::Multi_field::plus_times_equal  | 
          ( | 
          const Element &  | 
          x,  | 
         
        
           | 
           | 
          const Element &  | 
          y,  | 
         
        
           | 
           | 
          const Element &  | 
          w  | 
         
        
           | 
          ) | 
           |  | 
         
       
   | 
  
inline   | 
  
 
 
◆ times()
  
  
      
        
          | Element Gudhi::persistent_cohomology::Multi_field::times  | 
          ( | 
          const Element &  | 
          y,  | 
         
        
           | 
           | 
          const Element &  | 
          w  | 
         
        
           | 
          ) | 
           |  | 
         
       
   | 
  
inline   | 
  
 
 
◆ times_minus()
  
  
      
        
          | Element Gudhi::persistent_cohomology::Multi_field::times_minus  | 
          ( | 
          const Element &  | 
          x,  | 
         
        
           | 
           | 
          const Element &  | 
          y  | 
         
        
           | 
          ) | 
           |  | 
         
       
   | 
  
inline   | 
  
 
 
The documentation for this class was generated from the following file: