Gudhi::persistent_cohomology::Multi_field Class Reference

Structure representing coefficients in a set of finite fields simultaneously using the chinese remainder theorem. More...

Public Member Functions

const Element & additive_identity () const
 Returns the additive idendity \(0_{\Bbbk}\) of the field.
 
const Element & multiplicative_identity () const
 Returns the multiplicative identity \(1_{\Bbbk}\) of the field.
 
Element times (const Element &y, const Element &w)
 
const Element & characteristic () const
 Returns the characteristic \(p\) of the field.
 
std::pair< Element, Element > inverse (Element x, Element QS)
 
Element times_minus (const Element &x, const Element &y)
 
Element plus_times_equal (const Element &x, const Element &y, const Element &w)
 
- Public Member Functions inherited from CoefficientField
 CoefficientField ()
 
Element characteristic ()
 
Element multiplicative_identity ()
 
Element additive_identity ()
 
void plus_equal (Element x, Element y)
 

Additional Inherited Members

- Public Types inherited from CoefficientField
typedef unspecified Element
 Type of element of the field. More...
 

Detailed Description

Structure representing coefficients in a set of finite fields simultaneously using the chinese remainder theorem.

Details on the algorithms may be found in [6]

Examples
rips_multifield_persistence.cpp.

Member Function Documentation

◆ inverse()

std::pair<Element, Element> Gudhi::persistent_cohomology::Multi_field::inverse ( Element  x,
Element  QS 
)
inline

Returns the inverse in the field. Modifies P. ???

◆ plus_times_equal()

Element Gudhi::persistent_cohomology::Multi_field::plus_times_equal ( const Element &  x,
const Element &  y,
const Element &  w 
)
inline

Set x <- x + w * y

◆ times()

Element Gudhi::persistent_cohomology::Multi_field::times ( const Element &  y,
const Element &  w 
)
inline

Returns y * w

◆ times_minus()

Element Gudhi::persistent_cohomology::Multi_field::times_minus ( const Element &  x,
const Element &  y 
)
inline

Returns -x * y.


The documentation for this class was generated from the following file: