#include <gudhi/Alpha_complex.h>
#include <gudhi/Rips_complex.h>
#include <gudhi/Simplex_tree.h>
#include <gudhi/Persistent_cohomology.h>
#include <gudhi/Points_off_io.h>
#include <gudhi/Bottleneck.h>
 
#include <CGAL/Epick_d.h>
 
#include <boost/program_options.hpp>
 
#include <string>
#include <vector>
#include <limits>  
#include <utility>  
#include <algorithm>  
 
 
using Kernel = CGAL::Epick_d< CGAL::Dynamic_dimension_tag >;
using Point_d = Kernel::Point_d;
 
void program_options(int argc, char * argv[]
                     , std::string & off_file_points
                     , int & dim_max
                     , int & p
 
static inline std::pair<double, double> compute_root_square(std::pair<double, double> input) {
  return std::make_pair(std::sqrt(input.first), std::sqrt(input.second));
}
 
int main(int argc, char * argv[]) {
  std::string off_file_points;
  int dim_max;
  int p;
 
  program_options(argc, argv, off_file_points, threshold, dim_max, p, min_persistence);
 
 
  
  
  
 
  
 
  rips_complex.create_complex(rips_stree, dim_max);
  std::clog << 
"The Rips complex contains " << rips_stree.
num_simplices() << 
" simplices and has dimension " 
  
  
  rips_pcoh.init_coefficients(p);
  rips_pcoh.compute_persistent_cohomology(min_persistence);
 
  
 
  
  
  
 
  alpha_complex.create_complex(alpha_stree, threshold * threshold);
  std::clog << 
"The Alpha complex contains " << alpha_stree.
num_simplices() << 
" simplices and has dimension " 
  
  
  alpha_pcoh.init_coefficients(p);
  alpha_pcoh.compute_persistent_cohomology(min_persistence * min_persistence);
 
  
 
  
  
  
  double max_b_distance {};
  for (int dim = 0; dim < dim_max; dim ++) {
    std::vector< std::pair< Filtration_value , Filtration_value > > rips_intervals;
    std::vector< std::pair< Filtration_value , Filtration_value > > alpha_intervals;
    rips_intervals = rips_pcoh.intervals_in_dimension(dim);
    alpha_intervals = alpha_pcoh.intervals_in_dimension(dim);
    std::transform(alpha_intervals.begin(), alpha_intervals.end(), alpha_intervals.begin(), compute_root_square);
 
    std::clog << 
"In dimension " << dim << 
", bottleneck distance = " << 
bottleneck_distance << std::endl;
    if (bottleneck_distance > max_b_distance)
  }
  std::clog << "================================================================================" << std::endl;
  std::clog << "Bottleneck distance is " << max_b_distance << std::endl;
 
  return 0;
}
 
void program_options(int argc, char * argv[]
                     , std::string & off_file_points
                     , int & dim_max
                     , int & p
  namespace po = boost::program_options;
  po::options_description hidden("Hidden options");
  hidden.add_options()
      ("input-file", po::value<std::string>(&off_file_points),
       "Name of an OFF file containing a point set.\n");
 
  po::options_description visible("Allowed options", 100);
  visible.add_options()
      ("help,h", "produce help message")
      ("max-edge-length,r",
       po::value<Filtration_value>(&threshold)->default_value(std::numeric_limits<Filtration_value>::infinity()),
       "Maximal length of an edge for the Rips complex construction.")
      ("cpx-dimension,d", po::value<int>(&dim_max)->default_value(1),
       "Maximal dimension of the Rips complex we want to compute.")
      ("field-charac,p", po::value<int>(&p)->default_value(11),
       "Characteristic p of the coefficient field Z/pZ for computing homology.")
      ("min-persistence,m", po::value<Filtration_value>(&min_persistence),
       "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length intervals");
 
  po::positional_options_description pos;
  pos.add("input-file", 1);
 
  po::options_description all;
  all.add(visible).add(hidden);
 
  po::variables_map vm;
  po::store(po::command_line_parser(argc, argv).
            options(all).positional(pos).run(), vm);
  po::notify(vm);
 
  if (vm.count("help") || !vm.count("input-file")) {
    std::clog << std::endl;
    std::clog << "Compute the persistent homology with coefficient field Z/pZ \n";
    std::clog << "of a Rips complex defined on a set of input points.\n \n";
    std::clog << "The output diagram contains one bar per line, written with the convention: \n";
    std::clog << "   p   dim b d \n";
    std::clog << "where dim is the dimension of the homological feature,\n";
    std::clog << "b and d are respectively the birth and death of the feature and \n";
    std::clog << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl;
 
    std::clog << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl;
    std::clog << visible << std::endl;
    exit(-1);
  }
}
Compute the Euclidean distance between two Points given by a range of coordinates....
Definition: distance_functions.h:32
OFF file reader implementation in order to read points from an OFF file.
Definition: Points_off_io.h:122
Options::Filtration_value Filtration_value
Type for the value of the filtration function.
Definition: Simplex_tree.h:88
int dimension(Simplex_handle sh)
Returns the dimension of a simplex.
Definition: Simplex_tree.h:602
size_t num_simplices()
returns the number of simplices in the simplex_tree.
Definition: Simplex_tree.h:580
Alpha complex data structure.
Definition: Alpha_complex.h:103
Structure representing the coefficient field .
Definition: Field_Zp.h:27
Computes the persistent cohomology of a filtered complex.
Definition: Persistent_cohomology.h:52
Rips complex data structure.
Definition: Rips_complex.h:45
Global distance functions.
double bottleneck_distance(const Persistence_diagram1 &diag1, const Persistence_diagram2 &diag2, double e=(std::numeric_limits< double >::min)())
Function to compute the Bottleneck distance between two persistence diagrams.
Definition: Bottleneck.h:116
Value type for a filtration function on a cell complex.
Definition: FiltrationValue.h:20