|
template<typename Kernel , typename Point_range , typename PointOutputIterator , typename DistanceOutputIterator = Null_output_iterator> |
void | Gudhi::subsampling::choose_n_farthest_points (Kernel const &k, Point_range const &input_pts, std::size_t final_size, std::size_t starting_point, PointOutputIterator output_it, DistanceOutputIterator dist_it={}) |
| Subsample by a greedy strategy of iteratively adding the farthest point from the current chosen point set to the subsampling. The iteration starts with the landmark starting point or, if starting point==random_starting_point , with a random landmark. More...
|
|
template<typename Point_container , typename OutputIterator > |
void | Gudhi::subsampling::pick_n_random_points (Point_container const &points, std::size_t final_size, OutputIterator output_it) |
| Subsample a point set by picking random vertices. More...
|
|
template<typename Kernel , typename Point_range , typename OutputIterator > |
void | Gudhi::subsampling::sparsify_point_set (const Kernel &k, Point_range const &input_pts, typename Kernel::FT min_squared_dist, OutputIterator output_it) |
| Outputs a subset of the input points so that the squared distance between any two points is greater than or equal to min_squared_dist . More...
|
|
- Author
- Clément Jamin, Siargey Kachanovich
Introduction
This Gudhi component offers methods to subsample a set of points.
Example: sparsify_point_set
This example outputs a subset of the input points so that the squared distance between any two points is greater than or equal to 0.4.
#include <gudhi/sparsify_point_set.h>
#include <CGAL/Epick_d.h>
#include <CGAL/Random.h>
#include <iostream>
#include <vector>
#include <iterator>
int main(void) {
typedef CGAL::Epick_d<CGAL::Dimension_tag<4> > K;
typedef typename K::Point_d Point_d;
CGAL::Random rd;
std::vector<Point_d> points;
for (int i = 0; i < 500; ++i)
points.push_back(Point_d(rd.get_double(-1., 1), rd.get_double(-1., 1),
rd.get_double(-1., 1), rd.get_double(-1., 1)));
K k;
std::vector<Point_d> results;
std::clog << "Before sparsification: " << points.size() << " points.\n";
std::clog << "After sparsification: " << results.size() << " points.\n";
return 0;
}
Example: choose_n_farthest_points
This example outputs a subset of 100 points obtained by González algorithm, starting with a random point.
#include <gudhi/choose_n_farthest_points.h>
#include <CGAL/Epick_d.h>
#include <CGAL/Random.h>
#include <iostream>
#include <vector>
#include <iterator>
int main(void) {
typedef CGAL::Epick_d<CGAL::Dimension_tag<4> > K;
typedef typename K::Point_d Point_d;
CGAL::Random rd;
std::vector<Point_d> points;
for (int i = 0; i < 500; ++i)
points.push_back(Point_d(rd.get_double(-1., 1), rd.get_double(-1., 1),
rd.get_double(-1., 1), rd.get_double(-1., 1)));
K k;
std::vector<Point_d> results;
std::back_inserter(results));
std::clog << "Before sparsification: " << points.size() << " points.\n";
std::clog << "After sparsification: " << results.size() << " points.\n";
return 0;
}
Example: pick_n_random_points
This example outputs a subset of 100 points picked randomly.
#include <gudhi/pick_n_random_points.h>
#include <CGAL/Epick_d.h>
#include <CGAL/Random.h>
#include <iostream>
#include <vector>
#include <iterator>
int main(void) {
typedef CGAL::Epick_d<CGAL::Dimension_tag<4> > K;
typedef typename K::Point_d Point_d;
CGAL::Random rd;
std::vector<Point_d> points;
for (int i = 0; i < 500; ++i)
points.push_back(Point_d(rd.get_double(-1., 1), rd.get_double(-1., 1),
rd.get_double(-1., 1), rd.get_double(-1., 1)));
K k;
std::vector<Point_d> results;
std::clog << "Before sparsification: " << points.size() << " points.\n";
std::clog << "After sparsification: " << results.size() << " points.\n";
return 0;
}
◆ anonymous enum
anonymous enum : std::size_t |
Enumerator |
---|
random_starting_point | Argument for choose_n_farthest_points to indicate that the starting point should be picked randomly.
|
◆ choose_n_farthest_points()
template<typename Kernel , typename Point_range , typename PointOutputIterator , typename DistanceOutputIterator = Null_output_iterator>
void Gudhi::subsampling::choose_n_farthest_points |
( |
Kernel const & |
k, |
|
|
Point_range const & |
input_pts, |
|
|
std::size_t |
final_size, |
|
|
std::size_t |
starting_point, |
|
|
PointOutputIterator |
output_it, |
|
|
DistanceOutputIterator |
dist_it = {} |
|
) |
| |
Subsample by a greedy strategy of iteratively adding the farthest point from the current chosen point set to the subsampling. The iteration starts with the landmark starting point
or, if starting point==random_starting_point
, with a random landmark.
- Template Parameters
-
Kernel | must provide a type Kernel::Squared_distance_d which is a model of the concept Kernel_d::Squared_distance_d (despite the name, taken from CGAL, this can be any kind of metric or proximity measure). It must also contain a public member squared_distance_d_object() that returns an object of this type. |
Point_range | Range whose value type is Kernel::Point_d. It must provide random-access via operator[] and the points should be stored contiguously in memory. |
PointOutputIterator | Output iterator whose value type is Kernel::Point_d. |
DistanceOutputIterator | Output iterator for distances. |
It chooses final_size
points from a random access range input_pts
and outputs them in the output iterator output_it
. It also outputs the distance from each of those points to the set of previous points in dist_it
.
- Parameters
-
[in] | k | A kernel object. |
[in] | input_pts | Const reference to the input points. |
[in] | final_size | The size of the subsample to compute. |
[in] | starting_point | The seed in the farthest point algorithm. |
[out] | output_it | The output iterator for points. |
[out] | dist_it | The optional output iterator for distances. |
- Examples:
- Subsampling/example_choose_n_farthest_points.cpp, Subsampling/example_custom_kernel.cpp, Witness_complex/example_strong_witness_complex_off.cpp, Witness_complex/example_witness_complex_off.cpp, Witness_complex/example_witness_complex_sphere.cpp, Witness_complex/strong_witness_persistence.cpp, and Witness_complex/weak_witness_persistence.cpp.
◆ pick_n_random_points()
template<typename Point_container , typename OutputIterator >
void Gudhi::subsampling::pick_n_random_points |
( |
Point_container const & |
points, |
|
|
std::size_t |
final_size, |
|
|
OutputIterator |
output_it |
|
) |
| |
Subsample a point set by picking random vertices.
It chooses final_size
distinct points from a random access range points
and outputs them to the output iterator output_it
. Point_container::iterator should be ValueSwappable and RandomAccessIterator.
- Examples:
- Subsampling/example_pick_n_random_points.cpp.
◆ sparsify_point_set()
template<typename Kernel , typename Point_range , typename OutputIterator >
void Gudhi::subsampling::sparsify_point_set |
( |
const Kernel & |
k, |
|
|
Point_range const & |
input_pts, |
|
|
typename Kernel::FT |
min_squared_dist, |
|
|
OutputIterator |
output_it |
|
) |
| |
Outputs a subset of the input points so that the squared distance between any two points is greater than or equal to min_squared_dist
.
- Template Parameters
-
Kernel | must be a model of the SearchTraits concept, such as the CGAL::Epick_d class, which can be static if you know the ambiant dimension at compile-time, or dynamic if you don't. |
Point_range | Range whose value type is Kernel::Point_d. It must provide random-access via operator[] and the points should be stored contiguously in memory. |
OutputIterator | Output iterator whose value type is Kernel::Point_d. |
- Parameters
-
[in] | k | A kernel object. |
[in] | input_pts | Const reference to the input points. |
[in] | min_squared_dist | Minimum squared distance separating the output points. |
[out] | output_it | The output iterator. |
- Examples:
- Subsampling/example_sparsify_point_set.cpp, and Tangential_complex/example_with_perturb.cpp.