Source code for gudhi.sklearn.cubical_persistence
# This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
# See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
# Author(s): Vincent Rouvreau
#
# Copyright (C) 2021 Inria
#
# Modification(s):
# - YYYY/MM Author: Description of the modification
from .. import CubicalComplex
from sklearn.base import BaseEstimator, TransformerMixin
import numpy as np
# joblib is required by scikit-learn
from joblib import Parallel, delayed
# Mermaid sequence diagram - https://mermaid-js.github.io/mermaid-live-editor/
# sequenceDiagram
# USER->>CubicalPersistence: fit_transform(X)
# CubicalPersistence->>thread1: _tranform(X[0])
# CubicalPersistence->>thread2: _tranform(X[1])
# Note right of CubicalPersistence: ...
# thread1->>CubicalPersistence: [array( H0(X[0]) ), array( H1(X[0]) )]
# thread2->>CubicalPersistence: [array( H0(X[1]) ), array( H1(X[1]) )]
# Note right of CubicalPersistence: ...
# CubicalPersistence->>USER: [[array( H0(X[0]) ), array( H1(X[0]) )],<br/> [array( H0(X[1]) ), array( H1(X[1]) )],<br/> ...]
[docs]class CubicalPersistence(BaseEstimator, TransformerMixin):
"""
This is a class for computing the persistence diagrams from a cubical complex.
"""
[docs] def __init__(
self,
homology_dimensions,
newshape=None,
homology_coeff_field=11,
min_persistence=0.0,
n_jobs=None,
):
"""
Constructor for the CubicalPersistence class.
Parameters:
homology_dimensions (int or list of int): The returned persistence diagrams dimension(s).
Short circuit the use of :class:`~gudhi.representations.preprocessing.DimensionSelector` when only one
dimension matters (in other words, when `homology_dimensions` is an int).
newshape (tuple of ints): If cells filtration values require to be reshaped
(cf. :func:`~gudhi.sklearn.cubical_persistence.CubicalPersistence.transform`), set `newshape`
to perform `numpy.reshape(X, newshape, order='C')` in
:func:`~gudhi.sklearn.cubical_persistence.CubicalPersistence.transform` method.
homology_coeff_field (int): The homology coefficient field. Must be a prime number. Default value is 11.
min_persistence (float): The minimum persistence value to take into account (strictly greater than
`min_persistence`). Default value is `0.0`. Set `min_persistence` to `-1.0` to see all values.
n_jobs (int): cf. https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html
"""
self.homology_dimensions = homology_dimensions
self.newshape = newshape
self.homology_coeff_field = homology_coeff_field
self.min_persistence = min_persistence
self.n_jobs = n_jobs
[docs] def fit(self, X, Y=None):
"""
Nothing to be done, but useful when included in a scikit-learn Pipeline.
"""
return self
def __transform(self, cells):
cubical_complex = CubicalComplex(top_dimensional_cells=cells)
cubical_complex.compute_persistence(
homology_coeff_field=self.homology_coeff_field, min_persistence=self.min_persistence
)
return [
cubical_complex.persistence_intervals_in_dimension(dim) for dim in self.homology_dimensions
]
def __transform_only_this_dim(self, cells):
cubical_complex = CubicalComplex(top_dimensional_cells=cells)
cubical_complex.compute_persistence(
homology_coeff_field=self.homology_coeff_field, min_persistence=self.min_persistence
)
return cubical_complex.persistence_intervals_in_dimension(self.homology_dimensions)