# This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
# See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
# Author(s): Theo Lacombe
#
# Copyright (C) 2019 Inria
#
# Modification(s):
# - YYYY/MM Author: Description of the modification
import numpy as np
import scipy.spatial.distance as sc
try:
import ot
except ImportError:
print("POT (Python Optimal Transport) package is not installed. Try to run $ conda install -c conda-forge pot ; or $ pip install POT")
# Currently unused, but Théo says it is likely to be used again.
def _proj_on_diag(X):
'''
:param X: (n x 2) array encoding the points of a persistent diagram.
:returns: (n x 2) array encoding the (respective orthogonal) projections of the points onto the diagonal
'''
Z = (X[:,0] + X[:,1]) / 2.
return np.array([Z , Z]).T
def _dist_to_diag(X, internal_p):
'''
:param X: (n x 2) array encoding the points of a persistent diagram.
:param internal_p: Ground metric (i.e. norm L^p).
:returns: (n) array encoding the (respective orthogonal) distances of the points to the diagonal
.. note::
Assumes that the points are above the diagonal.
'''
return (X[:, 1] - X[:, 0]) * 2 ** (1.0 / internal_p - 1)
def _build_dist_matrix(X, Y, order, internal_p):
'''
:param X: (n x 2) numpy.array encoding the (points of the) first diagram.
:param Y: (m x 2) numpy.array encoding the second diagram.
:param order: exponent for the Wasserstein metric.
:param internal_p: Ground metric (i.e. norm L^p).
:returns: (n+1) x (m+1) np.array encoding the cost matrix C.
For 0 <= i < n, 0 <= j < m, C[i,j] encodes the distance between X[i] and Y[j],
while C[i, m] (resp. C[n, j]) encodes the distance (to the p) between X[i] (resp Y[j])
and its orthogonal projection onto the diagonal.
note also that C[n, m] = 0 (it costs nothing to move from the diagonal to the diagonal).
'''
Cxd = _dist_to_diag(X, internal_p)**order
Cdy = _dist_to_diag(Y, internal_p)**order
if np.isinf(internal_p):
C = sc.cdist(X,Y, metric='chebyshev')**order
else:
C = sc.cdist(X,Y, metric='minkowski', p=internal_p)**order
Cf = np.hstack((C, Cxd[:,None]))
Cdy = np.append(Cdy, 0)
Cf = np.vstack((Cf, Cdy[None,:]))
return Cf
def _perstot_autodiff(X, order, internal_p):
'''
Version of _perstot that works on eagerpy tensors.
'''
return _dist_to_diag(X, internal_p).norms.lp(order)
def _perstot(X, order, internal_p, enable_autodiff):
'''
:param X: (n x 2) numpy.array (points of a given diagram).
:param order: exponent for Wasserstein.
:param internal_p: Ground metric on the (upper-half) plane (i.e. norm L^p in R^2).
:param enable_autodiff: If X is torch.tensor, tensorflow.Tensor or jax.numpy.ndarray, make the computation
transparent to automatic differentiation.
:type enable_autodiff: bool
:returns: float, the total persistence of the diagram (that is, its distance to the empty diagram).
'''
if enable_autodiff:
import eagerpy as ep
return _perstot_autodiff(ep.astensor(X), order, internal_p).raw
else:
return np.linalg.norm(_dist_to_diag(X, internal_p), ord=order)
[docs]def wasserstein_distance(X, Y, matching=False, order=1., internal_p=np.inf, enable_autodiff=False):
'''
:param X: (n x 2) numpy.array encoding the (finite points of the) first diagram. Must not contain essential points
(i.e. with infinite coordinate).
:param Y: (m x 2) numpy.array encoding the second diagram.
:param matching: if True, computes and returns the optimal matching between X and Y, encoded as
a (n x 2) np.array [...[i,j]...], meaning the i-th point in X is matched to
the j-th point in Y, with the convention (-1) represents the diagonal.
:param order: exponent for Wasserstein; Default value is 1.
:param internal_p: Ground metric on the (upper-half) plane (i.e. norm L^p in R^2);
Default value is `np.inf`.
:param enable_autodiff: If X and Y are torch.tensor or tensorflow.Tensor, make the computation
transparent to automatic differentiation. This requires the package EagerPy and is currently incompatible
with `matching=True`.
.. note:: This considers the function defined on the coordinates of the off-diagonal points of X and Y
and lets the various frameworks compute its gradient. It never pulls new points from the diagonal.
:type enable_autodiff: bool
:returns: the Wasserstein distance of order q (1 <= q < infinity) between persistence diagrams with
respect to the internal_p-norm as ground metric.
If matching is set to True, also returns the optimal matching between X and Y.
'''
n = len(X)
m = len(Y)
# handle empty diagrams
if n == 0:
if m == 0:
if not matching:
# What if enable_autodiff?
return 0.
else:
return 0., np.array([])
else:
if not matching:
return _perstot(Y, order, internal_p, enable_autodiff)
else:
return _perstot(Y, order, internal_p, enable_autodiff), np.array([[-1, j] for j in range(m)])
elif m == 0:
if not matching:
return _perstot(X, order, internal_p, enable_autodiff)
else:
return _perstot(X, order, internal_p, enable_autodiff), np.array([[i, -1] for i in range(n)])
if enable_autodiff:
import eagerpy as ep
X_orig = ep.astensor(X)
Y_orig = ep.astensor(Y)
X = X_orig.numpy()
Y = Y_orig.numpy()
M = _build_dist_matrix(X, Y, order=order, internal_p=internal_p)
a = np.ones(n+1) # weight vector of the input diagram. Uniform here.
a[-1] = m
b = np.ones(m+1) # weight vector of the input diagram. Uniform here.
b[-1] = n
if matching:
assert not enable_autodiff, "matching and enable_autodiff are currently incompatible"
P = ot.emd(a=a,b=b,M=M, numItermax=2000000)
ot_cost = np.sum(np.multiply(P,M))
P[-1, -1] = 0 # Remove matching corresponding to the diagonal
match = np.argwhere(P)
# Now we turn to -1 points encoding the diagonal
match[:,0][match[:,0] >= n] = -1
match[:,1][match[:,1] >= m] = -1
return ot_cost ** (1./order) , match
if enable_autodiff:
P = ot.emd(a=a, b=b, M=M, numItermax=2000000)
pairs_X_Y = np.argwhere(P[:-1, :-1])
pairs_X_diag = np.nonzero(P[:-1, -1])
pairs_Y_diag = np.nonzero(P[-1, :-1])
dists = []
# empty arrays are not handled properly by the helpers, so we avoid calling them
if len(pairs_X_Y):
dists.append((Y_orig[pairs_X_Y[:, 1]] - X_orig[pairs_X_Y[:, 0]]).norms.lp(internal_p, axis=-1).norms.lp(order))
if len(pairs_X_diag[0]):
dists.append(_perstot_autodiff(X_orig[pairs_X_diag], order, internal_p))
if len(pairs_Y_diag[0]):
dists.append(_perstot_autodiff(Y_orig[pairs_Y_diag], order, internal_p))
dists = [dist.reshape(1) for dist in dists]
return ep.concatenate(dists).norms.lp(order).raw
# We can also concatenate the 3 vectors to compute just one norm.
# Comptuation of the otcost using the ot.emd2 library.
# Note: it is the Wasserstein distance to the power q.
# The default numItermax=100000 is not sufficient for some examples with 5000 points, what is a good value?
ot_cost = ot.emd2(a, b, M, numItermax=2000000)
return ot_cost ** (1./order)