Weighted_alpha_complex_3d_from_points.cpp
#include <gudhi/Alpha_complex_3d.h>
// to construct a simplex_tree from alpha complex
#include <gudhi/Simplex_tree.h>
#include <iostream>
#include <string>
#include <vector>
#include <limits> // for numeric limits
// Complexity = SAFE, weighted = true, periodic = false
int main(int argc, char **argv) {
// ----------------------------------------------------------------------------
// Init of a list of points and weights from a small molecule
// ----------------------------------------------------------------------------
std::vector<Weighted_point> weighted_points;
weighted_points.emplace_back(Bare_point(1, -1, -1), 4.);
weighted_points.emplace_back(Bare_point(-1, 1, -1), 4.);
weighted_points.emplace_back(Bare_point(-1, -1, 1), 4.);
weighted_points.emplace_back(Bare_point(1, 1, 1), 4.);
weighted_points.emplace_back(Bare_point(2, 2, 2), 1.);
// ----------------------------------------------------------------------------
// Init of an alpha complex from the list of points
// ----------------------------------------------------------------------------
Weighted_alpha_complex_3d alpha_complex_from_points(weighted_points);
if (alpha_complex_from_points.create_complex(simplex)) {
// ----------------------------------------------------------------------------
// Display information about the alpha complex
// ----------------------------------------------------------------------------
std::clog << "Weighted alpha complex is of dimension " << simplex.dimension() << " - " << simplex.num_simplices()
<< " simplices - " << simplex.num_vertices() << " vertices." << std::endl;
std::clog << "Iterator on weighted alpha complex simplices in the filtration order, with [filtration value]:" << std::endl;
for (auto f_simplex : simplex.filtration_simplex_range()) {
std::clog << " ( ";
for (auto vertex : simplex.simplex_vertex_range(f_simplex)) {
std::clog << vertex << " ";
}
std::clog << ") -> "
<< "[" << simplex.filtration(f_simplex) << "] ";
std::clog << std::endl;
}
}
return 0;
}
Simplex Tree data structure for representing simplicial complexes.
Definition: Simplex_tree.h:75
Filtration_simplex_range const & filtration_simplex_range(Indexing_tag=Indexing_tag())
Returns a range over the simplices of the simplicial complex, in the order of the filtration.
Definition: Simplex_tree.h:262
Simplex_vertex_range simplex_vertex_range(Simplex_handle sh) const
Returns a range over the vertices of a simplex.
Definition: Simplex_tree.h:273
static Filtration_value filtration(Simplex_handle sh)
Returns the filtration value of a simplex.
Definition: Simplex_tree.h:509
size_t num_vertices() const
Returns the number of vertices in the complex.
Definition: Simplex_tree.h:546
int dimension(Simplex_handle sh)
Returns the dimension of a simplex.
Definition: Simplex_tree.h:574
size_t num_simplices()
returns the number of simplices in the simplex_tree.
Definition: Simplex_tree.h:552
Alpha complex data structure for 3d specific case.
Definition: Alpha_complex_3d.h:121
bool create_complex(SimplicialComplexForAlpha3d &complex, Filtration_value max_alpha_square=std::numeric_limits< Filtration_value >::infinity())
Inserts all Delaunay triangulation into the simplicial complex. It also computes the filtration value...
Definition: Alpha_complex_3d.h:438
typename Kernel::Point_3 Bare_point_3
Gives public access to the Bare_point_3 (bare aka. unweighed) type. Here is a Bare_point_3 constructo...
Definition: Alpha_complex_3d.h:233
typename Triangulation_3< Kernel, Tds, Weighted, Periodic >::Weighted_point_3 Weighted_point_3
Gives public access to the Weighted_point_3 type. A Weighted point can be constructed as follows:
Definition: Alpha_complex_3d.h:246
GUDHI  Version 3.5.0  - C++ library for Topological Data Analysis (TDA) and Higher Dimensional Geometry Understanding.  - Copyright : MIT Generated on Thu Jan 13 2022 08:34:27 for GUDHI by Doxygen 1.9.2