11 #ifndef SPARSE_RIPS_COMPLEX_H_
12 #define SPARSE_RIPS_COMPLEX_H_
14 #include <gudhi/Debug_utils.h>
16 #include <gudhi/choose_n_farthest_points.h>
18 #include <boost/graph/graph_traits.hpp>
19 #include <boost/range/metafunctions.hpp>
20 #include <boost/iterator/counting_iterator.hpp>
25 namespace rips_complex {
27 template <
class Vertex_handle,
class Filtration_value>
29 typedef std::vector<Vertex_handle> VList;
30 typedef std::vector<std::tuple<Vertex_handle, Vertex_handle, Filtration_value>> EList;
31 typedef typename VList::const_iterator vertex_iterator;
32 typedef boost::counting_iterator<std::size_t> edge_iterator;
36 template <
class Vertex_handle,
class Filtration_value>
37 void add_vertex(
Vertex_handle v, Graph<Vertex_handle, Filtration_value>&g) { g.vlist.push_back(v); }
38 template <
class Vertex_handle,
class Filtration_value>
40 template <
class Vertex_handle,
class Filtration_value>
41 std::size_t num_vertices(Graph<Vertex_handle, Filtration_value>
const&g) {
return g.vlist.size(); }
42 template <
class Vertex_handle,
class Filtration_value>
43 std::size_t num_edges(Graph<Vertex_handle, Filtration_value>
const&g) {
return g.elist.size(); }
44 template <class Vertex_handle, class Filtration_value, class Iter = typename Graph<Vertex_handle, Filtration_value>::vertex_iterator>
46 vertices(Graph<Vertex_handle, Filtration_value>
const&g) {
47 return { g.vlist.begin(), g.vlist.end() };
49 template <
class Vertex_handle,
class Filtration_value>
50 std::pair<boost::counting_iterator<std::size_t>, boost::counting_iterator<std::size_t>>
51 edges(Graph<Vertex_handle, Filtration_value>
const&g) {
52 typedef boost::counting_iterator<std::size_t> I;
53 return { I(0), I(g.elist.size()) };
55 template <
class Vertex_handle,
class Filtration_value>
56 Vertex_handle source(std::size_t e, Graph<Vertex_handle, Filtration_value>
const&g) {
return std::get<0>(g.elist[e]); }
57 template <
class Vertex_handle,
class Filtration_value>
58 Vertex_handle target(std::size_t e, Graph<Vertex_handle, Filtration_value>
const&g) {
return std::get<1>(g.elist[e]); }
59 template <
class Vertex_handle,
class Filtration_value>
61 template <
class Vertex_handle,
class Filtration_value>
62 Filtration_value get(edge_filtration_t, Graph<Vertex_handle, Filtration_value>
const&g, std::size_t e) {
return std::get<2>(g.elist[e]); }
66 template <
class Vertex_handle,
class Filtration_value>
67 struct graph_traits<
Gudhi::rips_complex::Graph<Vertex_handle, Filtration_value>> {
68 typedef Gudhi::rips_complex::Graph<Vertex_handle, Filtration_value> G;
69 struct traversal_category : vertex_list_graph_tag, edge_list_graph_tag {};
71 typedef typename G::vertex_iterator vertex_iterator;
72 typedef std::size_t vertices_size_type;
73 typedef std::size_t edge_descriptor;
74 typedef typename G::edge_iterator edge_iterator;
75 typedef std::size_t edges_size_type;
76 typedef directed_tag directed_category;
77 typedef disallow_parallel_edge_tag edge_parallel_category;
84 namespace rips_complex {
103 template <
typename Filtration_value>
107 typedef int Vertex_handle;
108 typedef rips_complex::Graph<Vertex_handle, Filtration_value> Graph;
120 template <
typename RandomAccessPo
intRange,
typename Distance>
122 : epsilon_(epsilon) {
123 GUDHI_CHECK(epsilon > 0,
"epsilon must be positive");
124 auto dist_fun = [&](Vertex_handle i, Vertex_handle j) {
return distance(points[i], points[j]); };
127 std::back_inserter(sorted_points), std::back_inserter(params));
128 compute_sparse_graph(dist_fun, epsilon, mini, maxi);
141 template <
typename DistanceMatrix>
144 [&](Vertex_handle i, Vertex_handle j) {
return (i==j) ? 0 : (i<j) ? distance_matrix[j][i] : distance_matrix[i][j]; },
145 epsilon, mini, maxi) {}
157 template <
typename SimplicialComplexForRips>
160 std::invalid_argument(
"Sparse_rips_complex::create_complex - simplicial complex is not empty"));
167 const std::size_t n = num_vertices(graph_);
168 std::vector<Filtration_value> lambda(max_v + 1);
170 for(std::size_t i=0;i<n;++i)
171 lambda[sorted_points[i]] = params[i];
172 double cst = epsilon_ * (1 - epsilon_) / 2;
174 auto filt = complex.filtration(sh);
175 auto min_f = filt * cst;
177 if(lambda[v] < min_f)
187 template <
typename Distance>
189 const auto& points = sorted_points;
190 std::size_t n = boost::size(points);
191 double cst = epsilon * (1 - epsilon) / 2;
193 for (std::size_t i = 0; i < n; ++i) {
194 if ((params[i] < mini || params[i] <= 0) && i != 0)
break;
198 add_vertex(points[i], graph_);
199 max_v = std::max(max_v, points[i]);
201 n = num_vertices(graph_);
206 for (std::size_t i = 0; i < n; ++i) {
207 auto&& pi = points[i];
212 for (std::size_t j = i + 1; j < n; ++j) {
213 auto&& pj = points[j];
214 auto d = dist(pi, pj);
216 GUDHI_CHECK(lj <= li,
"Bad furthest point sorting");
220 if (d * epsilon <= 2 * lj)
222 else if (d * epsilon > li + lj)
225 alpha = (d - lj / epsilon) * 2;
227 if (epsilon < 1 && alpha * cst > lj)
232 add_edge(pi, pj, alpha, graph_);
242 std::vector<Vertex_handle> sorted_points;
244 std::vector<Filtration_value> params;
Sparse Rips complex data structure.
Definition: Sparse_rips_complex.h:104
Sparse_rips_complex(const RandomAccessPointRange &points, Distance distance, double const epsilon, Filtration_value const mini=-std::numeric_limits< Filtration_value >::infinity(), Filtration_value const maxi=std::numeric_limits< Filtration_value >::infinity())
Sparse_rips_complex constructor from a list of points.
Definition: Sparse_rips_complex.h:121
Sparse_rips_complex(const DistanceMatrix &distance_matrix, double const epsilon, Filtration_value const mini=-std::numeric_limits< Filtration_value >::infinity(), Filtration_value const maxi=std::numeric_limits< Filtration_value >::infinity())
Sparse_rips_complex constructor from a distance matrix.
Definition: Sparse_rips_complex.h:142
void create_complex(SimplicialComplexForRips &complex, int const dim_max)
Fills the simplicial complex with the sparse Rips graph and expands it with all the cliques,...
Definition: Sparse_rips_complex.h:158
Graph simplicial complex methods.
void choose_n_farthest_points_metric(Distance dist_, Point_range const &input_pts, std::size_t final_size, std::size_t starting_point, PointOutputIterator output_it, DistanceOutputIterator dist_it={})
Subsample by an iterative, greedy strategy.
Definition: choose_n_farthest_points.h:208
Gudhi namespace.
Definition: SimplicialComplexForAlpha.h:14
Value type for a filtration function on a cell complex.
Definition: FiltrationValue.h:20
The concept SimplicialComplexForRips describes the requirements for a type to implement a simplicial ...
Definition: SimplicialComplexForRips.h:21
unspecified simplex_vertex_range(Simplex_handle sh)
Returns a range over the vertices of a simplex.
std::size_t num_vertices()
Returns the number of vertices in the simplicial complex.
unspecified Simplex_handle
Handle type to a simplex contained in the simplicial complex.
Definition: SimplicialComplexForRips.h:26
void expansion(int max_dim)
Expands the simplicial complex containing only its one skeleton until a given maximal dimension as ex...
void expansion_with_blockers(int max_dim, Blocker block_simplex)
Expands a simplicial complex containing only a graph. Simplices corresponding to cliques in the graph...
void insert_graph(const OneSkeletonGraph &skel_graph)
Inserts a given Gudhi::rips_complex::Rips_complex::OneSkeletonGraph in the simplicial complex.
Handle type for the vertices of a cell complex.
Definition: VertexHandle.h:15