Loading...
Searching...
No Matches
Persistent_cohomology.h
1/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
2 * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
3 * Author(s): Clément Maria
4 *
5 * Copyright (C) 2014 Inria
6 *
7 * Modification(s):
8 * - YYYY/MM Author: Description of the modification
9 */
10
11#ifndef PERSISTENT_COHOMOLOGY_H_
12#define PERSISTENT_COHOMOLOGY_H_
13
14#include <gudhi/Persistent_cohomology/Persistent_cohomology_column.h>
15#include <gudhi/Persistent_cohomology/Field_Zp.h>
16#include <gudhi/Simple_object_pool.h>
17
18#include <boost/intrusive/set.hpp>
19#include <boost/pending/disjoint_sets.hpp>
20#include <boost/intrusive/list.hpp>
21
22#include <iostream>
23#include <map>
24#include <unordered_map>
25#include <utility>
26#include <list>
27#include <vector>
28#include <set>
29#include <fstream> // std::ofstream
30#include <limits> // for numeric_limits<>
31#include <tuple>
32#include <algorithm>
33#include <string>
34#include <stdexcept> // for std::out_of_range
35
36namespace Gudhi {
37
38namespace persistent_cohomology {
39
52// TODO(CM): Memory allocation policy: classic, use a mempool, etc.
53template<class FilteredComplex, class CoefficientField>
55 public:
56 // Data attached to each simplex to interface with a Property Map.
57
68 typedef std::tuple<Simplex_handle, Simplex_handle, Arith_element> Persistent_interval;
69
70 private:
71 // Compressed Annotation Matrix types:
72 // Column type
73 typedef Persistent_cohomology_column<Simplex_key, Arith_element> Column; // contains 1 set_hook
74 // Cell type
75 typedef typename Column::Cell Cell; // contains 2 list_hooks
76 // Remark: constant_time_size must be false because base_hook_cam_h has auto_unlink link_mode
77 typedef boost::intrusive::list<Cell,
78 boost::intrusive::constant_time_size<false>,
79 boost::intrusive::base_hook<base_hook_cam_h> > Hcell;
80
81 typedef boost::intrusive::set<Column,
82 boost::intrusive::constant_time_size<false> > Cam;
83 // Sparse column type for the annotation of the boundary of an element.
84 typedef std::vector<std::pair<Simplex_key, Arith_element> > A_ds_type;
85
86 public:
97 explicit Persistent_cohomology(FilteredComplex& cpx, bool persistence_dim_max = false)
98 : cpx_(&cpx),
99 dim_max_(cpx.dimension()), // upper bound on the dimension of the simplices
100 coeff_field_(), // initialize the field coefficient structure.
101 num_simplices_(cpx_->num_simplices()), // num_simplices save to avoid to call thrice the function
102 ds_rank_(num_simplices_), // union-find
103 ds_parent_(num_simplices_), // union-find
104 ds_repr_(num_simplices_, NULL), // union-find -> annotation vectors
105 dsets_(ds_rank_.data(), ds_parent_.data()), // union-find
106 cam_(), // collection of annotation vectors
107 zero_cocycles_(), // union-find -> Simplex_key of creator for 0-homology
108 transverse_idx_(), // key -> row
109 persistent_pairs_(),
110 interval_length_policy(&cpx, 0),
111 column_pool_(), // memory pools for the CAM
112 cell_pool_() {
113 if (num_simplices_ > std::numeric_limits<Simplex_key>::max()) {
114 // num_simplices must be strictly lower than the limit, because a value is reserved for null_key.
115 throw std::out_of_range("The number of simplices is more than Simplex_key type numeric limit.");
116 }
117 if (persistence_dim_max) {
118 ++dim_max_;
119 }
120 }
121
123 // Clean the transversal lists
124 for (auto & transverse_ref : transverse_idx_) {
125 // Destruct all the cells
126 transverse_ref.second.row_->clear_and_dispose([&](Cell*p){p->~Cell();});
127 delete transverse_ref.second.row_;
128 }
129 }
130
131 private:
132 struct length_interval {
133 length_interval(FilteredComplex * cpx, Filtration_value min_length)
134 : cpx_(cpx),
135 min_length_(min_length) {
136 }
137
138 bool operator()(Simplex_handle sh1, Simplex_handle sh2) {
139 return cpx_->filtration(sh2) - cpx_->filtration(sh1) > min_length_;
140 }
141
142 void set_length(Filtration_value new_length) {
143 min_length_ = new_length;
144 }
145
146 FilteredComplex * cpx_;
147 Filtration_value min_length_;
148 };
149
150 public:
152 void init_coefficients(int charac) {
153 coeff_field_.init(charac);
154 }
156 void init_coefficients(int charac_min, int charac_max) {
157 coeff_field_.init(charac_min, charac_max);
158 }
159
168 void compute_persistent_cohomology(Filtration_value min_interval_length = 0) {
169 interval_length_policy.set_length(min_interval_length);
170 Simplex_key idx_fil = -1;
171 std::vector<Simplex_key> vertices; // so we can check the connected components at the end
172 // Compute all finite intervals
173 for (auto sh : cpx_->filtration_simplex_range()) {
174 cpx_->assign_key(sh, ++idx_fil);
175 dsets_.make_set(cpx_->key(sh));
176 int dim_simplex = cpx_->dimension(sh);
177 switch (dim_simplex) {
178 case 0:
179 vertices.push_back(idx_fil);
180 break;
181 case 1:
182 update_cohomology_groups_edge(sh);
183 break;
184 default:
185 update_cohomology_groups(sh, dim_simplex);
186 break;
187 }
188 }
189 // Compute infinite intervals of dimension 0
190 for (Simplex_key key : vertices) { // for all 0-dimensional simplices
191 if (ds_parent_[key] == key // root of its tree
192 && zero_cocycles_.find(key) == zero_cocycles_.end()) {
193 persistent_pairs_.emplace_back(
194 cpx_->simplex(key), cpx_->null_simplex(), coeff_field_.characteristic());
195 }
196 }
197 for (auto zero_idx : zero_cocycles_) {
198 persistent_pairs_.emplace_back(
199 cpx_->simplex(zero_idx.second), cpx_->null_simplex(), coeff_field_.characteristic());
200 }
201 // Compute infinite interval of dimension > 0
202 for (auto cocycle : transverse_idx_) {
203 persistent_pairs_.emplace_back(
204 cpx_->simplex(cocycle.first), cpx_->null_simplex(), cocycle.second.characteristics_);
205 }
206 }
207
208 private:
213 void update_cohomology_groups_edge(Simplex_handle sigma) {
214 Simplex_handle u, v;
215 boost::tie(u, v) = cpx_->endpoints(sigma);
216
217 Simplex_key ku = dsets_.find_set(cpx_->key(u));
218 Simplex_key kv = dsets_.find_set(cpx_->key(v));
219
220 if (ku != kv) { // Destroy a connected component
221 dsets_.link(ku, kv);
222 // Keys of the simplices which created the connected components containing
223 // respectively u and v.
224 Simplex_key idx_coc_u, idx_coc_v;
225 auto map_it_u = zero_cocycles_.find(ku);
226 // If the index of the cocycle representing the class is already ku.
227 if (map_it_u == zero_cocycles_.end()) {
228 idx_coc_u = ku;
229 } else {
230 idx_coc_u = map_it_u->second;
231 }
232
233 auto map_it_v = zero_cocycles_.find(kv);
234 // If the index of the cocycle representing the class is already kv.
235 if (map_it_v == zero_cocycles_.end()) {
236 idx_coc_v = kv;
237 } else {
238 idx_coc_v = map_it_v->second;
239 }
240
241 if (cpx_->filtration(cpx_->simplex(idx_coc_u))
242 < cpx_->filtration(cpx_->simplex(idx_coc_v))) { // Kill cocycle [idx_coc_v], which is younger.
243 if (interval_length_policy(cpx_->simplex(idx_coc_v), sigma)) {
244 persistent_pairs_.emplace_back(
245 cpx_->simplex(idx_coc_v), sigma, coeff_field_.characteristic());
246 }
247 // Maintain the index of the 0-cocycle alive.
248 if (kv != idx_coc_v) {
249 zero_cocycles_.erase(map_it_v);
250 }
251 if (kv == dsets_.find_set(kv)) {
252 if (ku != idx_coc_u) {
253 zero_cocycles_.erase(map_it_u);
254 }
255 zero_cocycles_[kv] = idx_coc_u;
256 }
257 } else { // Kill cocycle [idx_coc_u], which is younger.
258 if (interval_length_policy(cpx_->simplex(idx_coc_u), sigma)) {
259 persistent_pairs_.emplace_back(
260 cpx_->simplex(idx_coc_u), sigma, coeff_field_.characteristic());
261 }
262 // Maintain the index of the 0-cocycle alive.
263 if (ku != idx_coc_u) {
264 zero_cocycles_.erase(map_it_u);
265 }
266 if (ku == dsets_.find_set(ku)) {
267 if (kv != idx_coc_v) {
268 zero_cocycles_.erase(map_it_v);
269 }
270 zero_cocycles_[ku] = idx_coc_v;
271 }
272 }
273 cpx_->assign_key(sigma, cpx_->null_key());
274 } else if (dim_max_ > 1) { // If ku == kv, same connected component: create a 1-cocycle class.
275 create_cocycle(sigma, coeff_field_.multiplicative_identity(), coeff_field_.characteristic());
276 }
277 }
278
279 /*
280 * Compute the annotation of the boundary of a simplex.
281 */
282 void annotation_of_the_boundary(
283 std::map<Simplex_key, Arith_element> & map_a_ds, Simplex_handle sigma,
284 int dim_sigma) {
285 // traverses the boundary of sigma, keeps track of the annotation vectors,
286 // with multiplicity. We used to sum the coefficients directly in
287 // annotations_in_boundary by using a map, we now do it later.
288 typedef std::pair<Column *, int> annotation_t;
289 thread_local std::vector<annotation_t> annotations_in_boundary;
290 annotations_in_boundary.clear();
291 int sign = 1 - 2 * (dim_sigma % 2); // \in {-1,1} provides the sign in the
292 // alternate sum in the boundary.
293 Simplex_key key;
294 Column * curr_col;
295
296 for (auto sh : cpx_->boundary_simplex_range(sigma)) {
297 key = cpx_->key(sh);
298 if (key != cpx_->null_key()) { // A simplex with null_key is a killer, and have null annotation
299 // Find its annotation vector
300 curr_col = ds_repr_[dsets_.find_set(key)];
301 if (curr_col != NULL) { // and insert it in annotations_in_boundary with multyiplicative factor "sign".
302 annotations_in_boundary.emplace_back(curr_col, sign);
303 }
304 }
305 sign = -sign;
306 }
307 // Place identical annotations consecutively so we can easily sum their multiplicities.
308 std::sort(annotations_in_boundary.begin(), annotations_in_boundary.end(),
309 [](annotation_t const& a, annotation_t const& b) { return a.first < b.first; });
310
311 // Sum the annotations with multiplicity, using a map<key,coeff>
312 // to represent a sparse vector.
313 std::pair<typename std::map<Simplex_key, Arith_element>::iterator, bool> result_insert_a_ds;
314
315 for (auto ann_it = annotations_in_boundary.begin(); ann_it != annotations_in_boundary.end(); ) {
316 Column* col = ann_it->first;
317 int mult = ann_it->second;
318 while (++ann_it != annotations_in_boundary.end() && ann_it->first == col) {
319 mult += ann_it->second;
320 }
321 // The following test is just a heuristic, it is not required, and it is fine that is misses p == 0.
322 if (mult != coeff_field_.additive_identity()) { // For all columns in the boundary,
323 for (auto cell_ref : col->col_) { // insert every cell in map_a_ds with multiplicity
324 Arith_element w_y = coeff_field_.times(cell_ref.coefficient_, mult); // coefficient * multiplicity
325
326 if (w_y != coeff_field_.additive_identity()) { // if != 0
327 result_insert_a_ds = map_a_ds.insert(std::pair<Simplex_key, Arith_element>(cell_ref.key_, w_y));
328 if (!(result_insert_a_ds.second)) { // if cell_ref.key_ already a Key in map_a_ds
329 result_insert_a_ds.first->second = coeff_field_.plus_equal(result_insert_a_ds.first->second, w_y);
330 if (result_insert_a_ds.first->second == coeff_field_.additive_identity()) {
331 map_a_ds.erase(result_insert_a_ds.first);
332 }
333 }
334 }
335 }
336 }
337 }
338 }
339
340 /*
341 * Update the cohomology groups under the insertion of a simplex.
342 */
343 void update_cohomology_groups(Simplex_handle sigma, int dim_sigma) {
344// Compute the annotation of the boundary of sigma:
345 std::map<Simplex_key, Arith_element> map_a_ds;
346 annotation_of_the_boundary(map_a_ds, sigma, dim_sigma);
347// Update the cohomology groups:
348 if (map_a_ds.empty()) { // sigma is a creator in all fields represented in coeff_field_
349 if (dim_sigma < dim_max_) {
350 create_cocycle(sigma, coeff_field_.multiplicative_identity(),
351 coeff_field_.characteristic());
352 }
353 } else { // sigma is a destructor in at least a field in coeff_field_
354 // Convert map_a_ds to a vector
355 A_ds_type a_ds; // admits reverse iterators
356 for (auto map_a_ds_ref : map_a_ds) {
357 a_ds.push_back(
358 std::pair<Simplex_key, Arith_element>(map_a_ds_ref.first,
359 map_a_ds_ref.second));
360 }
361
362 Arith_element inv_x, charac;
363 Arith_element prod = coeff_field_.characteristic(); // Product of characteristic of the fields
364 for (auto a_ds_rit = a_ds.rbegin();
365 (a_ds_rit != a_ds.rend())
366 && (prod != coeff_field_.multiplicative_identity()); ++a_ds_rit) {
367 std::tie(inv_x, charac) = coeff_field_.inverse(a_ds_rit->second, prod);
368
369 if (inv_x != coeff_field_.additive_identity()) {
370 destroy_cocycle(sigma, a_ds, a_ds_rit->first, inv_x, charac);
371 prod /= charac;
372 }
373 }
374 if (prod != coeff_field_.multiplicative_identity()
375 && dim_sigma < dim_max_) {
376 create_cocycle(sigma, coeff_field_.multiplicative_identity(prod), prod);
377 }
378 }
379 }
380
381 /* \brief Create a new cocycle class.
382 *
383 * The class is created by the insertion of the simplex sigma.
384 * The methods adds a cocycle, representing the new cocycle class,
385 * to the matrix representing the cohomology groups.
386 * The new cocycle has value 0 on every simplex except on sigma
387 * where it worths 1.*/
388 void create_cocycle(Simplex_handle sigma, Arith_element x,
389 Arith_element charac) {
390 Simplex_key key = cpx_->key(sigma);
391 // Create a column containing only one cell,
392 Column * new_col = column_pool_.construct(key);
393 Cell * new_cell = cell_pool_.construct(key, x, new_col);
394 new_col->col_.push_back(*new_cell);
395 // and insert it in the matrix, in constant time thanks to the hint cam_.end().
396 // Indeed *new_col has the biggest lexicographic value because key is the
397 // biggest key used so far.
398 cam_.insert(cam_.end(), *new_col);
399 // Update the disjoint sets data structure.
400 Hcell * new_hcell = new Hcell;
401 new_hcell->push_back(*new_cell);
402 transverse_idx_[key] = cocycle(charac, new_hcell); // insert the new row
403 ds_repr_[key] = new_col;
404 }
405
406 /* \brief Destroy a cocycle class.
407 *
408 * The cocycle class is destroyed by the insertion of sigma.
409 * The methods proceeds to a reduction of the matrix representing
410 * the cohomology groups using Gauss pivoting. The reduction zeros-out
411 * the row containing the cell with highest key in
412 * a_ds, the annotation of the boundary of simplex sigma. This key
413 * is "death_key".*/
414 void destroy_cocycle(Simplex_handle sigma, A_ds_type const& a_ds,
415 Simplex_key death_key, Arith_element inv_x,
416 Arith_element charac) {
417 // Create a finite persistent interval for which the interval exists
418 if (interval_length_policy(cpx_->simplex(death_key), sigma)) {
419 persistent_pairs_.emplace_back(cpx_->simplex(death_key) // creator
420 , sigma // destructor
421 , charac); // fields
422 }
423
424 auto death_key_row = transverse_idx_.find(death_key); // Find the beginning of the row.
425 std::pair<typename Cam::iterator, bool> result_insert_cam;
426
427 auto row_cell_it = death_key_row->second.row_->begin();
428
429 while (row_cell_it != death_key_row->second.row_->end()) { // Traverse all cells in
430 // the row at index death_key.
431 Arith_element w = coeff_field_.times_minus(inv_x, row_cell_it->coefficient_);
432
433 if (w != coeff_field_.additive_identity()) {
434 Column * curr_col = row_cell_it->self_col_;
435 ++row_cell_it;
436 // Disconnect the column from the rows in the CAM.
437 for (auto& col_cell : curr_col->col_) {
438 col_cell.base_hook_cam_h::unlink();
439 }
440
441 // Remove the column from the CAM before modifying its value
442 cam_.erase(cam_.iterator_to(*curr_col));
443 // Proceed to the reduction of the column
444 plus_equal_column(*curr_col, a_ds, w);
445
446 if (curr_col->col_.empty()) { // If the column is null
447 ds_repr_[curr_col->class_key_] = NULL;
448 column_pool_.destroy(curr_col); // delete curr_col;
449 } else {
450 // Find whether the column obtained is already in the CAM
451 result_insert_cam = cam_.insert(*curr_col);
452 if (result_insert_cam.second) { // If it was not in the CAM before: insertion has succeeded
453 for (auto& col_cell : curr_col->col_) {
454 // re-establish the row links
455 transverse_idx_[col_cell.key_].row_->push_front(col_cell);
456 }
457 } else { // There is already an identical column in the CAM:
458 // merge two disjoint sets.
459 dsets_.link(curr_col->class_key_,
460 result_insert_cam.first->class_key_);
461
462 Simplex_key key_tmp = dsets_.find_set(curr_col->class_key_);
463 ds_repr_[key_tmp] = &(*(result_insert_cam.first));
464 result_insert_cam.first->class_key_ = key_tmp;
465 // intrusive containers don't own their elements, we have to release them manually
466 curr_col->col_.clear_and_dispose([&](Cell*p){cell_pool_.destroy(p);});
467 column_pool_.destroy(curr_col); // delete curr_col;
468 }
469 }
470 } else {
471 ++row_cell_it;
472 } // If w == 0, pass.
473 }
474
475 // Because it is a killer simplex, set the data of sigma to null_key().
476 if (charac == coeff_field_.characteristic()) {
477 cpx_->assign_key(sigma, cpx_->null_key());
478 }
479 if (death_key_row->second.characteristics_ == charac) {
480 delete death_key_row->second.row_;
481 transverse_idx_.erase(death_key_row);
482 } else {
483 death_key_row->second.characteristics_ /= charac;
484 }
485 }
486
487 /*
488 * Assign: target <- target + w * other.
489 */
490 void plus_equal_column(Column & target, A_ds_type const& other // value_type is pair<Simplex_key,Arith_element>
491 , Arith_element w) {
492 auto target_it = target.col_.begin();
493 auto other_it = other.begin();
494 while (target_it != target.col_.end() && other_it != other.end()) {
495 if (target_it->key_ < other_it->first) {
496 ++target_it;
497 } else {
498 if (target_it->key_ > other_it->first) {
499 Cell * cell_tmp = cell_pool_.construct(Cell(other_it->first // key
500 , coeff_field_.additive_identity(), &target));
501
502 cell_tmp->coefficient_ = coeff_field_.plus_times_equal(cell_tmp->coefficient_, other_it->second, w);
503
504 target.col_.insert(target_it, *cell_tmp);
505
506 ++other_it;
507 } else { // it1->key == it2->key
508 // target_it->coefficient_ <- target_it->coefficient_ + other_it->second * w
509 target_it->coefficient_ = coeff_field_.plus_times_equal(target_it->coefficient_, other_it->second, w);
510 if (target_it->coefficient_ == coeff_field_.additive_identity()) {
511 auto tmp_it = target_it;
512 ++target_it;
513 ++other_it; // iterators remain valid
514 Cell * tmp_cell_ptr = &(*tmp_it);
515 target.col_.erase(tmp_it); // removed from column
516
517 cell_pool_.destroy(tmp_cell_ptr); // delete from memory
518 } else {
519 ++target_it;
520 ++other_it;
521 }
522 }
523 }
524 }
525 while (other_it != other.end()) {
526 Cell * cell_tmp = cell_pool_.construct(Cell(other_it->first, coeff_field_.additive_identity(), &target));
527 cell_tmp->coefficient_ = coeff_field_.plus_times_equal(cell_tmp->coefficient_, other_it->second, w);
528 target.col_.insert(target.col_.end(), *cell_tmp);
529
530 ++other_it;
531 }
532 }
533
534 /*
535 * Compare two intervals by length.
536 */
537 struct cmp_intervals_by_length {
538 explicit cmp_intervals_by_length(FilteredComplex * sc)
539 : sc_(sc) {
540 }
541 bool operator()(const Persistent_interval & p1, const Persistent_interval & p2) {
542 return (sc_->filtration(get < 1 > (p1)) - sc_->filtration(get < 0 > (p1))
543 > sc_->filtration(get < 1 > (p2)) - sc_->filtration(get < 0 > (p2)));
544 }
545 FilteredComplex * sc_;
546 };
547
548 public:
559 void output_diagram(std::ostream& ostream = std::cout) {
560 cmp_intervals_by_length cmp(cpx_);
561 std::sort(std::begin(persistent_pairs_), std::end(persistent_pairs_), cmp);
562 for (auto pair : persistent_pairs_) {
563 ostream << get<2>(pair) << " " << cpx_->dimension(get<0>(pair)) << " "
564 << cpx_->filtration(get<0>(pair)) << " "
565 << cpx_->filtration(get<1>(pair)) << " " << std::endl;
566 }
567 }
568
569 void write_output_diagram(std::string diagram_name) {
570 std::ofstream diagram_out(diagram_name.c_str());
571 diagram_out.exceptions(diagram_out.failbit);
572 cmp_intervals_by_length cmp(cpx_);
573 std::sort(std::begin(persistent_pairs_), std::end(persistent_pairs_), cmp);
574 for (auto pair : persistent_pairs_) {
575 diagram_out << cpx_->dimension(get<0>(pair)) << " "
576 << cpx_->filtration(get<0>(pair)) << " "
577 << cpx_->filtration(get<1>(pair)) << std::endl;
578 }
579 }
580
584 std::vector<int> betti_numbers() const {
585 // Init Betti numbers vector with zeros until Simplicial complex dimension and don't allocate a vector of negative
586 // size for an empty complex
587 std::vector<int> betti_numbers(std::max(dim_max_, 0));
588
589 for (auto pair : persistent_pairs_) {
590 // Count never ended persistence intervals
591 if (cpx_->null_simplex() == get<1>(pair)) {
592 // Increment corresponding betti number
593 betti_numbers[cpx_->dimension(get<0>(pair))] += 1;
594 }
595 }
596 return betti_numbers;
597 }
598
604 int betti_number(int dimension) const {
605 int betti_number = 0;
606
607 for (auto pair : persistent_pairs_) {
608 // Count never ended persistence intervals
609 if (cpx_->null_simplex() == get<1>(pair)) {
610 if (cpx_->dimension(get<0>(pair)) == dimension) {
611 // Increment betti number found
612 ++betti_number;
613 }
614 }
615 }
616 return betti_number;
617 }
618
625 // Init Betti numbers vector with zeros until Simplicial complex dimension and don't allocate a vector of negative
626 // size for an empty complex
627 std::vector<int> betti_numbers(std::max(dim_max_, 0));
628 for (auto pair : persistent_pairs_) {
629 // Count persistence intervals that covers the given interval
630 // null_simplex test : if the function is called with to=+infinity, we still get something useful. And it will
631 // still work if we change the complex filtration function to reject null simplices.
632 if (cpx_->filtration(get<0>(pair)) <= from &&
633 (get<1>(pair) == cpx_->null_simplex() || cpx_->filtration(get<1>(pair)) > to)) {
634 // Increment corresponding betti number
635 betti_numbers[cpx_->dimension(get<0>(pair))] += 1;
636 }
637 }
638 return betti_numbers;
639 }
640
647 int persistent_betti_number(int dimension, Filtration_value from, Filtration_value to) const {
648 int betti_number = 0;
649
650 for (auto pair : persistent_pairs_) {
651 // Count persistence intervals that covers the given interval
652 // null_simplex test : if the function is called with to=+infinity, we still get something useful. And it will
653 // still work if we change the complex filtration function to reject null simplices.
654 if (cpx_->filtration(get<0>(pair)) <= from &&
655 (get<1>(pair) == cpx_->null_simplex() || cpx_->filtration(get<1>(pair)) > to)) {
656 if (cpx_->dimension(get<0>(pair)) == dimension) {
657 // Increment betti number found
658 ++betti_number;
659 }
660 }
661 }
662 return betti_number;
663 }
664
668 const std::vector<Persistent_interval>& get_persistent_pairs() const {
669 return persistent_pairs_;
670 }
671
676 std::vector< std::pair< Filtration_value , Filtration_value > >
677 intervals_in_dimension(int dimension) {
678 std::vector< std::pair< Filtration_value , Filtration_value > > result;
679 // auto && pair, to avoid unnecessary copying
680 for (auto && pair : persistent_pairs_) {
681 if (cpx_->dimension(get<0>(pair)) == dimension) {
682 result.emplace_back(cpx_->filtration(get<0>(pair)), cpx_->filtration(get<1>(pair)));
683 }
684 }
685 return result;
686 }
687
688 private:
689 /*
690 * Structure representing a cocycle.
691 */
692 struct cocycle {
693 cocycle()
694 : row_(nullptr),
695 characteristics_() {
696 }
697 cocycle(Arith_element characteristics, Hcell * row)
698 : row_(row),
699 characteristics_(characteristics) {
700 }
701
702 Hcell * row_; // points to the corresponding row in the CAM
703 Arith_element characteristics_; // product of field characteristics for which the cocycle exist
704 };
705
706 public:
707 FilteredComplex * cpx_;
708 int dim_max_;
709 CoefficientField coeff_field_;
710 size_t num_simplices_;
711
712 /* Disjoint sets data structure to link the model of FilteredComplex
713 * with the compressed annotation matrix.
714 * ds_rank_ is a property map Simplex_key -> int, ds_parent_ is a property map
715 * Simplex_key -> simplex_key_t */
716 std::vector<int> ds_rank_;
717 std::vector<Simplex_key> ds_parent_;
718 std::vector<Column *> ds_repr_;
719 boost::disjoint_sets<int *, Simplex_key *> dsets_;
720 /* The compressed annotation matrix fields.*/
721 Cam cam_;
722 /* Dictionary establishing the correspondence between the Simplex_key of
723 * the root vertex in the union-find ds and the Simplex_key of the vertex which
724 * created the connected component as a 0-dimension homology feature.*/
725 std::unordered_map<Simplex_key, Simplex_key> zero_cocycles_;
726 /* Key -> row. */
727 std::map<Simplex_key, cocycle> transverse_idx_;
728 /* Persistent intervals. */
729 std::vector<Persistent_interval> persistent_pairs_;
730 length_interval interval_length_policy;
731
732 Simple_object_pool<Column> column_pool_;
733 Simple_object_pool<Cell> cell_pool_;
734};
735
736} // namespace persistent_cohomology
737
738} // namespace Gudhi
739
740#endif // PERSISTENT_COHOMOLOGY_H_
Computes the persistent cohomology of a filtered complex.
Definition: Persistent_cohomology.h:54
std::vector< int > persistent_betti_numbers(Filtration_value from, Filtration_value to) const
Returns the persistent Betti numbers.
Definition: Persistent_cohomology.h:624
std::vector< std::pair< Filtration_value, Filtration_value > > intervals_in_dimension(int dimension)
Returns persistence intervals for a given dimension.
Definition: Persistent_cohomology.h:677
std::vector< int > betti_numbers() const
Returns Betti numbers.
Definition: Persistent_cohomology.h:584
void output_diagram(std::ostream &ostream=std::cout)
Output the persistence diagram in ostream.
Definition: Persistent_cohomology.h:559
std::tuple< Simplex_handle, Simplex_handle, Arith_element > Persistent_interval
Type for birth and death FilteredComplex::Simplex_handle. The Arith_element field is used for the mul...
Definition: Persistent_cohomology.h:68
FilteredComplex::Simplex_handle Simplex_handle
Handle to specify a simplex.
Definition: Persistent_cohomology.h:61
Persistent_cohomology(FilteredComplex &cpx, bool persistence_dim_max=false)
Initializes the Persistent_cohomology class.
Definition: Persistent_cohomology.h:97
int persistent_betti_number(int dimension, Filtration_value from, Filtration_value to) const
Returns the persistent Betti number of the dimension passed by parameter.
Definition: Persistent_cohomology.h:647
int betti_number(int dimension) const
Returns the Betti number of the dimension passed by parameter.
Definition: Persistent_cohomology.h:604
FilteredComplex::Simplex_key Simplex_key
Data stored for each simplex.
Definition: Persistent_cohomology.h:59
void compute_persistent_cohomology(Filtration_value min_interval_length=0)
Compute the persistent homology of the filtered simplicial complex.
Definition: Persistent_cohomology.h:168
void init_coefficients(int charac)
Initializes the coefficient field.
Definition: Persistent_cohomology.h:152
void init_coefficients(int charac_min, int charac_max)
Initializes the coefficient field for multi-field persistent homology.
Definition: Persistent_cohomology.h:156
CoefficientField::Element Arith_element
Type of element of the field.
Definition: Persistent_cohomology.h:65
FilteredComplex::Filtration_value Filtration_value
Type for the value of the filtration function.
Definition: Persistent_cohomology.h:63
const std::vector< Persistent_interval > & get_persistent_pairs() const
Returns a list of persistence birth and death FilteredComplex::Simplex_handle pairs.
Definition: Persistent_cohomology.h:668
Concept describing the requirements for a class to represent a field of coefficients to compute persi...
Definition: CoefficientField.h:14
Element additive_identity()
Element multiplicative_identity()
unspecified Element
Type of element of the field.
Definition: CoefficientField.h:19
Element characteristic()
void plus_equal(Element x, Element y)
The concept FilteredComplex describes the requirements for a type to implement a filtered cell comple...
Definition: FilteredComplex.h:17
unspecified Simplex_key
Data stored for each simplex.
Definition: FilteredComplex.h:91
Filtration_value filtration(Simplex_handle sh)
Returns the filtration value of a simplex.
void assign_key(Simplex_handle sh, Simplex_key n)
Store a number for a simplex, which can later be retrieved with key(sh).
Simplex_handle null_simplex()
Returns a Simplex_handle that is different from all simplex handles of the simplices.
Filtration_simplex_range filtration_simplex_range()
Returns a range over the simplices of the complex in the order of the filtration.
unspecified Simplex_handle
Handle to specify a simplex.
Definition: FilteredComplex.h:19
Simplex_key null_key()
Returns a constant dummy number that is either negative, or at least as large as num_simplices()....
Simplex_key key(Simplex_handle sh)
Returns the number stored for a simplex by assign_key.
unspecified Filtration_value
Type for the value of the filtration function.
Definition: FilteredComplex.h:23
int dimension(Simplex_handle sh)
Returns the dimension of a simplex.
Simplex_handle simplex(size_t idx)
Returns the simplex that has index idx in the filtration.
Boundary_simplex_range boundary_simplex_range(Simplex_handle sh)
Returns a range giving access to all simplices of the boundary of a simplex, i.e. the set of codimens...
Value type for a filtration function on a cell complex.
Definition: FiltrationValue.h:20