Loading...
Searching...
No Matches
Bitmap_cubical_complex_base.h
1/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
2 * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
3 * Author(s): Pawel Dlotko
4 *
5 * Copyright (C) 2015 Inria
6 *
7 * Modification(s):
8 * - YYYY/MM Author: Description of the modification
9 */
10
11#ifndef BITMAP_CUBICAL_COMPLEX_BASE_H_
12#define BITMAP_CUBICAL_COMPLEX_BASE_H_
13
14#include <gudhi/Debug_utils.h>
15
16#include <boost/config.hpp>
17#include <boost/iterator/counting_iterator.hpp>
18#include <boost/range/iterator_range.hpp>
19
20#include <iostream>
21#include <vector>
22#include <string>
23#include <fstream>
24#include <algorithm>
25#include <iterator>
26#include <limits>
27#include <utility>
28#include <stdexcept>
29#include <cstddef>
30#include <numeric>
31#include <functional>
32
33namespace Gudhi {
34
35namespace cubical_complex {
36
56template <typename T>
58 public:
59 typedef T filtration_type;
60
71 explicit Bitmap_cubical_complex_base(const std::vector<unsigned>& sizes);
78 explicit Bitmap_cubical_complex_base(const char* perseus_style_file);
83 Bitmap_cubical_complex_base(const std::vector<unsigned>& dimensions, const std::vector<T>& cells, bool input_top_cells = true);
84
89
101 virtual inline std::vector<std::size_t> get_boundary_of_a_cell(std::size_t cell) const;
116 virtual inline std::vector<std::size_t> get_coboundary_of_a_cell(std::size_t cell) const;
117
126 inline size_t get_top_dimensional_coface_of_a_cell(size_t splx);
127
136 inline size_t get_vertex_of_a_cell(size_t splx);
137
157 virtual int compute_incidence_between_cells(std::size_t coface, std::size_t face) const {
158 // first get the counters for coface and face:
159 std::vector<unsigned> coface_counter = this->compute_counter_for_given_cell(coface);
160 std::vector<unsigned> face_counter = this->compute_counter_for_given_cell(face);
161
162 // coface_counter and face_counter should agree at all positions except from one:
163 int number_of_position_in_which_counters_do_not_agree = -1;
164 std::size_t number_of_full_faces_that_comes_before = 0;
165 for (std::size_t i = 0; i != coface_counter.size(); ++i) {
166 if ((coface_counter[i] % 2 == 1) && (number_of_position_in_which_counters_do_not_agree == -1)) {
167 ++number_of_full_faces_that_comes_before;
168 }
169 if (coface_counter[i] != face_counter[i]) {
170 if (number_of_position_in_which_counters_do_not_agree != -1) {
171 std::cerr << "Cells given to compute_incidence_between_cells procedure do not form a pair of coface-face.\n";
172 throw std::logic_error(
173 "Cells given to compute_incidence_between_cells procedure do not form a pair of coface-face.");
174 }
175 number_of_position_in_which_counters_do_not_agree = i;
176 }
177 }
178
179 int incidence = 1;
180 if (number_of_full_faces_that_comes_before % 2) incidence = -1;
181 // if the face cell is on the right from coface cell:
182 if (coface_counter[number_of_position_in_which_counters_do_not_agree] + 1 ==
183 face_counter[number_of_position_in_which_counters_do_not_agree]) {
184 incidence *= -1;
185 }
186
187 return incidence;
188 }
189
198 inline unsigned get_dimension_of_a_cell(std::size_t cell) const;
199
206 inline T& get_cell_data(std::size_t cell);
207
216 void impose_lower_star_filtration(); // assume that top dimensional cells are already set.
217
222 void impose_lower_star_filtration_from_vertices(); // assume that vertices are already set.
223
227 inline unsigned dimension() const { return sizes.size(); }
228
232 inline std::size_t size() const { return this->data.size(); }
233
242 void put_data_to_bins(std::size_t number_of_bins);
243
254 void put_data_to_bins(T diameter_of_bin);
255
259 std::pair<T, T> min_max_filtration();
260
261 // ITERATORS
262
267 typedef boost::counting_iterator<std::size_t> All_cells_iterator;
268
273
278
282 typedef boost::iterator_range<All_cells_iterator> All_cells_range;
283
286
290 typedef typename std::vector<std::size_t>::const_iterator Boundary_iterator;
291 typedef typename std::vector<std::size_t> Boundary_range;
292
297 Boundary_range boundary_range(std::size_t sh) { return this->get_boundary_of_a_cell(sh); }
298
302 typedef typename std::vector<std::size_t>::const_iterator Coboundary_iterator;
303 typedef typename std::vector<std::size_t> Coboundary_range;
304
309 Coboundary_range coboundary_range(std::size_t sh) { return this->get_coboundary_of_a_cell(sh); }
310
316 public:
317 typedef std::input_iterator_tag iterator_category;
318 typedef std::size_t value_type;
319 typedef std::ptrdiff_t difference_type;
320 typedef value_type* pointer;
321 typedef value_type reference;
322
324
325 Top_dimensional_cells_iterator operator++() {
326 // first find first element of the counter that can be increased:
327 std::size_t dim = 0;
328 while ((dim != this->b->dimension()) && (this->counter[dim] == this->b->sizes[dim] - 1)) ++dim;
329
330 if (dim != this->b->dimension()) {
331 ++this->counter[dim];
332 for (std::size_t i = 0; i != dim; ++i) {
333 this->counter[i] = 0;
334 }
335 } else {
336 ++this->counter[0];
337 }
338 return *this;
339 }
340
341 Top_dimensional_cells_iterator operator++(int) {
342 Top_dimensional_cells_iterator result = *this;
343 ++(*this);
344 return result;
345 }
346
347 bool operator==(const Top_dimensional_cells_iterator& rhs) const {
348 if (this->b != rhs.b) return false;
349 if (this->counter.size() != rhs.counter.size()) return false;
350 for (std::size_t i = 0; i != this->counter.size(); ++i) {
351 if (this->counter[i] != rhs.counter[i]) return false;
352 }
353 return true;
354 }
355
356 bool operator!=(const Top_dimensional_cells_iterator& rhs) const { return !(*this == rhs); }
357
358 /*
359 * The operator * returns position of a cube in the structure of cubical complex. This position can be then used as
360 * an argument of the following functions:
361 * get_boundary_of_a_cell, get_coboundary_of_a_cell, get_dimension_of_a_cell to get information about the cell
362 * boundary and coboundary and dimension
363 * and in function get_cell_data to get a filtration of a cell.
364 */
365 std::size_t operator*() { return this->compute_index_in_bitmap(); }
366
367 std::size_t compute_index_in_bitmap() const {
368 std::size_t index = 0;
369 for (std::size_t i = 0; i != this->counter.size(); ++i) {
370 index += (2 * this->counter[i] + 1) * this->b->multipliers[i];
371 }
372 return index;
373 }
374
375 void print_counter() const {
376 for (std::size_t i = 0; i != this->counter.size(); ++i) {
377 std::clog << this->counter[i] << " ";
378 }
379 }
380 friend class Bitmap_cubical_complex_base;
381
382 protected:
383 std::vector<std::size_t> counter;
385 };
386
392 return a;
393 }
394
400 for (std::size_t i = 0; i != this->dimension(); ++i) {
401 a.counter[i] = this->sizes[i] - 1;
402 }
403 a.counter[0]++;
404 return a;
405 }
406
411 public:
413
415
417
418 private:
420 };
421
424
425 //****************************************************************************************************************//
426 //****************************************************************************************************************//
427 //****************************************************************************************************************//
428 //****************************************************************************************************************//
429 class Vertices_iterator {
430 public:
431 typedef std::input_iterator_tag iterator_category;
432 typedef std::size_t value_type;
433 typedef std::ptrdiff_t difference_type;
434 typedef value_type* pointer;
435 typedef value_type reference;
436
437 Vertices_iterator(Bitmap_cubical_complex_base* b) : counter(b->dimension()), b(b) {}
438
439 Vertices_iterator operator++() {
440 // first find first element of the counter that can be increased:
441 std::size_t dim = 0;
442 while ((dim != this->b->dimension()) && (this->counter[dim] == this->b->sizes[dim])) ++dim;
443
444 if (dim != this->b->dimension()) {
445 ++this->counter[dim];
446 for (std::size_t i = 0; i != dim; ++i) {
447 this->counter[i] = 0;
448 }
449 } else {
450 ++this->counter[0];
451 }
452 return *this;
453 }
454
455 Vertices_iterator operator++(int) {
456 Vertices_iterator result = *this;
457 ++(*this);
458 return result;
459 }
460
461 bool operator==(const Vertices_iterator& rhs) const {
462 if (this->b != rhs.b) return false;
463 GUDHI_CHECK(this->counter.size() == rhs.counter.size(), "impossible");
464 for (std::size_t i = 0; i != this->counter.size(); ++i) {
465 if (this->counter[i] != rhs.counter[i]) return false;
466 }
467 return true;
468 }
469
470 bool operator!=(const Vertices_iterator& rhs) const { return !(*this == rhs); }
471
472 /*
473 * The operator * returns position of a cube in the structure of cubical complex. This position can be then used as
474 * an argument of the following functions:
475 * get_boundary_of_a_cell, get_coboundary_of_a_cell, get_dimension_of_a_cell to get information about the cell
476 * boundary and coboundary and dimension
477 * and in function get_cell_data to get a filtration of a cell.
478 */
479 std::size_t operator*() const { return this->compute_index_in_bitmap(); }
480
481 std::size_t compute_index_in_bitmap() const {
482 std::size_t index = 0;
483 for (std::size_t i = 0; i != this->counter.size(); ++i) {
484 index += 2 * this->counter[i] * this->b->multipliers[i];
485 }
486 return index;
487 }
488
489 void print_counter() const {
490 for (std::size_t i = 0; i != this->counter.size(); ++i) {
491 std::clog << this->counter[i] << " ";
492 }
493 }
494 friend class Bitmap_cubical_complex_base;
495
496 protected:
497 std::vector<std::size_t> counter;
498 Bitmap_cubical_complex_base* b;
499 };
500
501 /*
502 * Function returning a Vertices_iterator to the first vertex of the bitmap.
503 */
504 Vertices_iterator vertices_iterator_begin() {
505 Vertices_iterator a(this);
506 return a;
507 }
508
509 /*
510 * Function returning a Vertices_iterator to the last vertex of the bitmap.
511 */
512 Vertices_iterator vertices_iterator_end() {
513 Vertices_iterator a(this);
514 for (std::size_t i = 0; i != this->dimension(); ++i) {
515 a.counter[i] = this->sizes[i];
516 }
517 a.counter[0]++;
518 return a;
519 }
520
521 /*
522 * @brief Vertices_iterator_range class provides ranges for Vertices_iterator_range
523 */
524 class Vertices_range {
525 public:
526 Vertices_range(Bitmap_cubical_complex_base* b) : b(b) {}
527
528 Vertices_iterator begin() { return b->vertices_iterator_begin(); }
529
530 Vertices_iterator end() { return b->vertices_iterator_end(); }
531
532 private:
534 };
535
536 /* Returns a range over all vertices. */
537 Vertices_range vertices_range() { return Vertices_range(this); }
538
539 //****************************************************************************************************************//
540 //****************************************************************************************************************//
541 //****************************************************************************************************************//
542 //****************************************************************************************************************//
543
544 inline std::size_t number_cells() const { return this->data.size(); }
545
546 //****************************************************************************************************************//
547 //****************************************************************************************************************//
548 //****************************************************************************************************************//
549 //****************************************************************************************************************//
550
552 template <class F> void for_each_vertex(F&&f) {
553 for_each_vertex_rec(f, 0, multipliers.size()-1);
554 }
555
556 protected:
557 std::vector<unsigned> sizes;
558 std::vector<unsigned> multipliers;
559 std::vector<T> data;
560
561 template <class F> void for_each_vertex_rec(F&&f, std::size_t base, int dim);
562 void propagate_from_vertices_rec(int special_dim, int current_dim, std::size_t base);
563
564 void set_up_containers(const std::vector<unsigned>& sizes, bool is_pos_inf) {
565 // The fact that multipliers[0]=1 is relied on by optimizations in other functions
566 unsigned multiplier = 1;
567 for (std::size_t i = 0; i != sizes.size(); ++i) {
568 this->sizes.push_back(sizes[i]);
569 this->multipliers.push_back(multiplier);
570 multiplier *= 2 * sizes[i] + 1;
571 }
572 if(is_pos_inf)
573 this->data = std::vector<T>(multiplier, std::numeric_limits<T>::infinity());
574 else
575 this->data = std::vector<T>(multiplier, -std::numeric_limits<T>::infinity());
576 }
577
578 std::size_t compute_position_in_bitmap(const std::vector<unsigned>& counter) {
579 std::size_t position = 0;
580 for (std::size_t i = 0; i != this->multipliers.size(); ++i) {
581 position += this->multipliers[i] * counter[i];
582 }
583 return position;
584 }
585
586 std::vector<unsigned> compute_counter_for_given_cell(std::size_t cell) const {
587 std::vector<unsigned> counter;
588 counter.reserve(this->sizes.size());
589 for (std::size_t dim = this->sizes.size(); dim > 1; --dim) {
590 std::size_t quot = cell / this->multipliers[dim - 1];
591 cell = cell % this->multipliers[dim - 1];
592 counter.push_back(quot);
593 }
594 // Split out the last iteration to save a costly division by multipliers[0]=1
595 counter.push_back(cell);
596 std::reverse(counter.begin(), counter.end());
597 return counter;
598 }
599 void read_perseus_style_file(const char* perseus_style_file);
600 void setup_bitmap_based_on_top_dimensional_cells_list(const std::vector<unsigned>& sizes_in_following_directions,
601 const std::vector<T>& top_dimensional_cells);
602 void setup_bitmap_based_on_vertices(const std::vector<unsigned>& sizes_in_following_directions,
603 const std::vector<T>& vertices);
604 Bitmap_cubical_complex_base(const char* perseus_style_file, const std::vector<bool>& directions);
605 Bitmap_cubical_complex_base(const std::vector<unsigned>& sizes, const std::vector<bool>& directions);
606 Bitmap_cubical_complex_base(const std::vector<unsigned>& dimensions, const std::vector<T>& cells,
607 const std::vector<bool>& directions, bool input_top_cells);
608};
609
610template <typename T>
611void Bitmap_cubical_complex_base<T>::put_data_to_bins(std::size_t number_of_bins) {
612
613 std::pair<T, T> min_max = this->min_max_filtration();
614 T dx = (min_max.second - min_max.first) / (T)number_of_bins;
615
616 // now put the data into the appropriate bins:
617 for (std::size_t i = 0; i != this->data.size(); ++i) {
618#ifdef DEBUG_TRACES
619 std::clog << "Before binning : " << this->data[i] << std::endl;
620#endif
621 this->data[i] = min_max.first + dx * (this->data[i] - min_max.first) / number_of_bins;
622#ifdef DEBUG_TRACES
623 std::clog << "After binning : " << this->data[i] << std::endl;
624#endif
625 }
626}
627
628template <typename T>
630 std::pair<T, T> min_max = this->min_max_filtration();
631
632 std::size_t number_of_bins = (min_max.second - min_max.first) / diameter_of_bin;
633 // now put the data into the appropriate bins:
634 for (std::size_t i = 0; i != this->data.size(); ++i) {
635#ifdef DEBUG_TRACES
636 std::clog << "Before binning : " << this->data[i] << std::endl;
637#endif
638 this->data[i] = min_max.first + diameter_of_bin * (this->data[i] - min_max.first) / number_of_bins;
639#ifdef DEBUG_TRACES
640 std::clog << "After binning : " << this->data[i] << std::endl;
641#endif
642 }
643}
644
645template <typename T>
647 std::pair<T, T> min_max(std::numeric_limits<T>::infinity(), -std::numeric_limits<T>::infinity());
648 for (std::size_t i = 0; i != this->data.size(); ++i) {
649 if (this->data[i] < min_max.first) min_max.first = this->data[i];
650 if (this->data[i] > min_max.second) min_max.second = this->data[i];
651 }
652 return min_max;
653}
654
655template <typename T>
657 this->set_up_containers(sizes, true);
658}
659
660template <typename T>
662 const std::vector<unsigned>& sizes_in_following_directions, const std::vector<T>& top_dimensional_cells) {
663 this->set_up_containers(sizes_in_following_directions, true);
664 std::size_t number_of_top_dimensional_elements = std::accumulate(std::begin(sizes_in_following_directions),
665 std::end(sizes_in_following_directions), std::size_t(1),
666 std::multiplies<std::size_t>());
667 if (number_of_top_dimensional_elements != top_dimensional_cells.size()) {
668 std::cerr << "Error in constructor Bitmap_cubical_complex_base ( std::vector<unsigned> "
669 << "sizes_in_following_directions, std::vector<T> top_dimensional_cells ). Number of top dimensional "
670 << "elements that follow from sizes_in_following_directions vector is different from the size of "
671 << "top_dimensional_cells vector."
672 << std::endl;
673 throw std::invalid_argument(
674 "Error in constructor Bitmap_cubical_complex_base( std::vector<unsigned> sizes_in_following_directions,"
675 "std::vector<T> top_dimensional_cells ). Number of top dimensional elements that follow from "
676 "sizes_in_following_directions vector is different from the size of top_dimensional_cells vector.");
677 }
678
679 std::size_t index = 0;
680 for (auto it = this->top_dimensional_cells_iterator_begin();
681 it != this->top_dimensional_cells_iterator_end(); ++it) {
682 this->get_cell_data(*it) = top_dimensional_cells[index];
683 ++index;
684 }
685 this->impose_lower_star_filtration();
686}
687
688template <typename T>
689void Bitmap_cubical_complex_base<T>::setup_bitmap_based_on_vertices(const std::vector<unsigned>& sizes_in_following_directions,
690 const std::vector<T>& vertices) {
691 std::vector<unsigned> top_cells_sizes;
692 std::transform (sizes_in_following_directions.begin(), sizes_in_following_directions.end(), std::back_inserter(top_cells_sizes),
693 [](int i){ return i-1;});
694 this->set_up_containers(top_cells_sizes, false);
695 std::size_t number_of_vertices = std::accumulate(std::begin(sizes_in_following_directions),
696 std::end(sizes_in_following_directions), (std::size_t)1,
697 std::multiplies<std::size_t>());
698 if (number_of_vertices != vertices.size()) {
699 std::cerr << "Error in constructor Bitmap_cubical_complex_base ( std::vector<unsigned> "
700 << "sizes_in_following_directions, std::vector<T> vertices ). Number of vertices "
701 << "elements that follow from sizes_in_following_directions vector is different from the size of "
702 << "vertices vector."
703 << std::endl;
704 throw std::invalid_argument(
705 "Error in constructor Bitmap_cubical_complex_base( std::vector<unsigned> sizes_in_following_directions,"
706 "std::vector<T> vertices ). Number of vertices elements that follow from "
707 "sizes_in_following_directions vector is different from the size of vertices vector.");
708 }
709
710 for_each_vertex([this, &vertices, index=(std::size_t)0] (auto cell) mutable { get_cell_data(cell) = vertices[index++]; });
711 this->impose_lower_star_filtration_from_vertices();
712}
713
714template <typename T>
716 if (this->get_dimension_of_a_cell(splx) == this->dimension()){return splx;}
717 else {
718 for (auto v : this->get_coboundary_of_a_cell(splx)){
719 if(this->get_cell_data(v) == this->get_cell_data(splx)){
720 return this->get_top_dimensional_coface_of_a_cell(v);
721 }
722 }
723 }
724 BOOST_UNREACHABLE_RETURN(-2);
725}
726
727template <typename T>
729 if (this->get_dimension_of_a_cell(splx) == 0){return splx;}
730 else {
731 for (auto v : this->get_boundary_of_a_cell(splx)){
732 if(this->get_cell_data(v) == this->get_cell_data(splx)){
733 return this->get_vertex_of_a_cell(v);
734 }
735 }
736 }
737 BOOST_UNREACHABLE_RETURN(-2);
738}
739
740template <typename T>
741Bitmap_cubical_complex_base<T>::Bitmap_cubical_complex_base(const std::vector<unsigned>& sizes_in_following_directions,
742 const std::vector<T>& cells, bool input_top_cells) {
743 if (input_top_cells) {
744 this->setup_bitmap_based_on_top_dimensional_cells_list(sizes_in_following_directions, cells);
745 } else {
746 this->setup_bitmap_based_on_vertices(sizes_in_following_directions, cells);
747 }
748}
749
750template <typename T>
751void Bitmap_cubical_complex_base<T>::read_perseus_style_file(const char* perseus_style_file) {
752 std::ifstream inFiltration(perseus_style_file);
753 if(!inFiltration) throw std::ios_base::failure(std::string("Could not open the file ") + perseus_style_file);
754 unsigned dimensionOfData;
755 inFiltration >> dimensionOfData;
756
757#ifdef DEBUG_TRACES
758 std::clog << "dimensionOfData : " << dimensionOfData << std::endl;
759#endif
760
761 std::vector<unsigned> sizes;
762 sizes.reserve(dimensionOfData);
763 // all dimensions multiplied
764 std::size_t dimensions = 1;
765 for (std::size_t i = 0; i != dimensionOfData; ++i) {
766 unsigned size_in_this_dimension;
767 inFiltration >> size_in_this_dimension;
768 sizes.push_back(size_in_this_dimension);
769 dimensions *= size_in_this_dimension;
770#ifdef DEBUG_TRACES
771 std::clog << "size_in_this_dimension : " << size_in_this_dimension << std::endl;
772#endif
773 }
774 this->set_up_containers(sizes, true);
775
776 Bitmap_cubical_complex_base<T>::Top_dimensional_cells_iterator it = this->top_dimensional_cells_iterator_begin();
777
778 T filtrationLevel = 0.;
779 std::size_t filtration_counter = 0;
780 while (!inFiltration.eof()) {
781 std::string line;
782 getline(inFiltration, line);
783 if (line.length() != 0) {
784 int n = sscanf(line.c_str(), "%lf", &filtrationLevel);
785 if (n != 1) {
786 std::string perseus_error("Bad Perseus file format. This line is incorrect : " + line);
787 throw std::ios_base::failure(perseus_error.c_str());
788 }
789
790#ifdef DEBUG_TRACES
791 std::clog << "Cell of an index : " << it.compute_index_in_bitmap()
792 << " and dimension: " << this->get_dimension_of_a_cell(it.compute_index_in_bitmap())
793 << " get the value : " << filtrationLevel << std::endl;
794#endif
795 this->get_cell_data(*it) = filtrationLevel;
796 ++it;
797 ++filtration_counter;
798 }
799 }
800
801 if (filtration_counter != dimensions) {
802 std::string perseus_error("Bad Perseus file format. Read " + std::to_string(filtration_counter) + " expected " + \
803 std::to_string(dimensions) + " values");
804 throw std::ios_base::failure(perseus_error);
805 }
806
807 inFiltration.close();
808 this->impose_lower_star_filtration();
809}
810
811template <typename T>
813 const std::vector<bool>& directions) {
814 // this constructor is here just for compatibility with a class that creates cubical complexes with periodic boundary
815 // conditions.
816 // It ignores the last parameter of the function.
817 this->read_perseus_style_file(perseus_style_file);
818}
819
820template <typename T>
821Bitmap_cubical_complex_base<T>::Bitmap_cubical_complex_base(const std::vector<unsigned>& sizes,
822 const std::vector<bool>& directions) {
823 // this constructor is here just for compatibility with a class that creates cubical complexes with periodic boundary
824 // conditions.
825 // It ignores the last parameter of the function.
826 this->set_up_containers(sizes, true);
827}
828
829template <typename T>
830Bitmap_cubical_complex_base<T>::Bitmap_cubical_complex_base(const std::vector<unsigned>& dimensions,
831 const std::vector<T>& cells,
832 const std::vector<bool>& directions,
833 bool input_top_cells) {
834 // this constructor is here just for compatibility with a class that creates cubical complexes with periodic boundary
835 // conditions.
836 // It ignores the last parameter of the function.
837 if (input_top_cells) {
838 this->setup_bitmap_based_on_top_dimensional_cells_list(dimensions, cells);
839 } else {
840 this->setup_bitmap_based_on_vertices(dimensions, cells);
841 }
842}
843
844template <typename T>
846 this->read_perseus_style_file(perseus_style_file);
847}
848
849template <typename T>
850std::vector<std::size_t> Bitmap_cubical_complex_base<T>::get_boundary_of_a_cell(std::size_t cell) const {
851 std::vector<std::size_t> boundary_elements;
852
853 // Speed traded of for memory. Check if it is better in practice.
854 boundary_elements.reserve(this->dimension() * 2);
855
856 std::size_t sum_of_dimensions = 0;
857 std::size_t cell1 = cell;
858 for (std::size_t i = this->multipliers.size(); i > 1; --i) {
859 unsigned position = cell1 / this->multipliers[i - 1];
860 cell1 = cell1 % this->multipliers[i - 1];
861 if (position % 2 == 1) {
862 if (sum_of_dimensions % 2) {
863 boundary_elements.push_back(cell + this->multipliers[i - 1]);
864 boundary_elements.push_back(cell - this->multipliers[i - 1]);
865 } else {
866 boundary_elements.push_back(cell - this->multipliers[i - 1]);
867 boundary_elements.push_back(cell + this->multipliers[i - 1]);
868 }
869 ++sum_of_dimensions;
870 }
871 }
872 // Split out the last iteration to save a costly division by multipliers[0]=1
873 if (cell1 % 2 == 1) {
874 if (sum_of_dimensions % 2) {
875 boundary_elements.push_back(cell + 1);
876 boundary_elements.push_back(cell - 1);
877 } else {
878 boundary_elements.push_back(cell - 1);
879 boundary_elements.push_back(cell + 1);
880 }
881 ++sum_of_dimensions;
882 }
883
884 return boundary_elements;
885}
886
887template <typename T>
888std::vector<std::size_t> Bitmap_cubical_complex_base<T>::get_coboundary_of_a_cell(std::size_t cell) const {
889 std::vector<unsigned> counter = this->compute_counter_for_given_cell(cell);
890 std::vector<std::size_t> coboundary_elements;
891 std::size_t cell1 = cell;
892 for (std::size_t i = this->multipliers.size(); i > 1; --i) {
893 // It is a bit sad to recompute those divisions when we just did them in compute_counter_for_given_cell.
894 unsigned position = cell1 / this->multipliers[i - 1];
895 cell1 = cell1 % this->multipliers[i - 1];
896 if (position % 2 == 0) {
897 if ((cell > this->multipliers[i - 1]) && (counter[i - 1] != 0)) {
898 coboundary_elements.push_back(cell - this->multipliers[i - 1]);
899 }
900 if ((cell + this->multipliers[i - 1] < this->data.size()) && (counter[i - 1] != 2 * this->sizes[i - 1])) {
901 coboundary_elements.push_back(cell + this->multipliers[i - 1]);
902 }
903 }
904 }
905 if (cell1 % 2 == 0) {
906 if ((cell > 1) && (counter[0] != 0)) {
907 coboundary_elements.push_back(cell - 1);
908 }
909 if ((cell + 1 < this->data.size()) && (counter[0] != 2 * this->sizes[0])) {
910 coboundary_elements.push_back(cell + 1);
911 }
912 }
913 return coboundary_elements;
914}
915
916template <typename T>
918#ifdef DEBUG_TRACES
919 std::clog << "\n\n\n Computing position o a cell of an index : " << cell << std::endl;
920#endif
921 unsigned dimension = 0;
922 for (std::size_t i = this->multipliers.size(); i > 1; --i) {
923 unsigned position = cell / this->multipliers[i - 1];
924 std::size_t newcell = cell % this->multipliers[i - 1];
925
926#ifdef DEBUG_TRACES
927 std::clog << "i-1 :" << i - 1 << std::endl;
928 std::clog << "cell : " << cell << std::endl;
929 std::clog << "position : " << position << std::endl;
930 std::clog << "multipliers[" << i - 1 << "] = " << this->multipliers[i - 1] << std::endl;
931#endif
932
933 if (position % 2 == 1) {
934#ifdef DEBUG_TRACES
935 std::clog << "Nonzero length in this direction \n";
936#endif
937 dimension++;
938 }
939 cell = newcell;
940 }
941 // Split out the last iteration to save a costly division by multipliers[0]=1
942#ifdef DEBUG_TRACES
943 std::clog << "i-1 :" << 0 << std::endl;
944 std::clog << "cell : " << cell << std::endl;
945 std::clog << "position : " << cell << std::endl;
946 std::clog << "multipliers[" << 0 << "] = " << 1 << std::endl;
947#endif
948
949 if (cell % 2 == 1) {
950#ifdef DEBUG_TRACES
951 std::clog << "Nonzero length in this direction \n";
952#endif
953 dimension++;
954 }
955
956 return dimension;
957}
958
959template <typename T>
961 return this->data[cell];
962}
963
964template <typename T>
966 // this vector will be used to check which elements have already been taken care of in imposing lower star filtration
967 std::vector<bool> is_this_cell_considered(this->data.size(), false);
968
969 std::vector<std::size_t> indices_to_consider;
970 // we assume here that we already have a filtration on the top dimensional cells and
971 // we have to extend it to lower ones.
972 for (auto it = this->top_dimensional_cells_iterator_begin();
973 it != this->top_dimensional_cells_iterator_end(); ++it) {
974 indices_to_consider.push_back(it.compute_index_in_bitmap());
975 }
976
977 while (indices_to_consider.size()) {
978#ifdef DEBUG_TRACES
979 std::clog << "indices_to_consider in this iteration \n";
980 for (auto index : indices_to_consider) {
981 std::clog << index << " ";
982 }
983#endif
984 std::vector<std::size_t> new_indices_to_consider;
985 for (auto index : indices_to_consider) {
986 std::vector<std::size_t> bd = this->get_boundary_of_a_cell(index);
987 for (auto boundary : bd) {
988#ifdef DEBUG_TRACES
989 std::clog << "filtration of a cell : " << boundary << " is : " << this->data[boundary]
990 << " while of a cell: " << index << " is: " << this->data[index]
991 << std::endl;
992#endif
993 if (this->data[boundary] > this->data[index]) {
994 this->data[boundary] = this->data[index];
995#ifdef DEBUG_TRACES
996 std::clog << "Setting the value of a cell : " << boundary
997 << " to : " << this->data[index] << std::endl;
998#endif
999 }
1000 if (is_this_cell_considered[boundary] == false) {
1001 new_indices_to_consider.push_back(boundary);
1002 is_this_cell_considered[boundary] = true;
1003 }
1004 }
1005 }
1006 indices_to_consider.swap(new_indices_to_consider);
1007 }
1008}
1009
1010template <typename T>
1011template <class F>
1012void Bitmap_cubical_complex_base<T>::for_each_vertex_rec(F&&f, std::size_t base, int dim) {
1013 if (dim > 0)
1014 for(std::size_t i = 0; i < sizes[dim] + 1; ++i)
1015 for_each_vertex_rec(f, base + multipliers[dim] * 2 * i, dim - 1);
1016 else
1017 for(std::size_t i = 0; i < sizes[0] + 1; ++i)
1018 f(base + 2 * i);
1019}
1020
1021template <typename T>
1023 int max_dim = multipliers.size()-1;
1024 for (int dim = max_dim; dim >= 0; --dim)
1025 propagate_from_vertices_rec(dim, max_dim, 0);
1026}
1027
1028template <typename T>
1029void Bitmap_cubical_complex_base<T>::propagate_from_vertices_rec (int special_dim, int current_dim, std::size_t base) {
1030 if (special_dim == current_dim) {
1031 propagate_from_vertices_rec(special_dim, current_dim - 1, base);
1032 return;
1033 }
1034 if (current_dim < 0) {
1035 std::size_t step = multipliers[special_dim];
1036 for(std::size_t i = 0; i < sizes[special_dim]; ++i) {
1037 std::size_t ref = base + step * 2 * i;
1038 data[ref + step] = std::max(data[ref], data[ref + 2 * step]);
1039 }
1040 return;
1041 }
1042 if (current_dim < special_dim)
1043 for(std::size_t i = 0; i < sizes[current_dim] + 1; ++i)
1044 propagate_from_vertices_rec(special_dim, current_dim - 1, base + multipliers[current_dim] * 2 * i);
1045 else
1046 for(std::size_t i = 0; i < 2 * sizes[current_dim] + 1; ++i)
1047 propagate_from_vertices_rec(special_dim, current_dim - 1, base + multipliers[current_dim] * i);
1048}
1049
1050template <typename T>
1051bool compareFirstElementsOfTuples(const std::pair<std::pair<T, std::size_t>, char>& first,
1052 const std::pair<std::pair<T, std::size_t>, char>& second) {
1053 if (first.first.first < second.first.first) {
1054 return true;
1055 } else {
1056 if (first.first.first > second.first.first) {
1057 return false;
1058 }
1059 // in this case first.first.first == second.first.first, so we need to compare dimensions
1060 return first.second < second.second;
1061 }
1062}
1063
1064} // namespace cubical_complex
1065
1066namespace Cubical_complex = cubical_complex;
1067
1068} // namespace Gudhi
1069
1070#endif // BITMAP_CUBICAL_COMPLEX_BASE_H_
Iterator through top dimensional cells of the complex. The cells appear in order they are stored in t...
Definition: Bitmap_cubical_complex_base.h:315
Range corresponding to Top_dimensional_cells_iterator.
Definition: Bitmap_cubical_complex_base.h:410
Cubical complex represented as a bitmap, class with basic implementation.
Definition: Bitmap_cubical_complex_base.h:57
std::vector< std::size_t >::const_iterator Coboundary_iterator
Definition: Bitmap_cubical_complex_base.h:302
Bitmap_cubical_complex_base()
Definition: Bitmap_cubical_complex_base.h:64
void put_data_to_bins(std::size_t number_of_bins)
Definition: Bitmap_cubical_complex_base.h:611
void impose_lower_star_filtration()
Definition: Bitmap_cubical_complex_base.h:965
boost::counting_iterator< std::size_t > All_cells_iterator
Iterator through all cells in the complex (in order they appear in the structure – i....
Definition: Bitmap_cubical_complex_base.h:267
std::size_t size() const
Definition: Bitmap_cubical_complex_base.h:232
boost::iterator_range< All_cells_iterator > All_cells_range
Range corresponding to All_cells_iterator.
Definition: Bitmap_cubical_complex_base.h:282
virtual std::vector< std::size_t > get_coboundary_of_a_cell(std::size_t cell) const
Definition: Bitmap_cubical_complex_base.h:888
unsigned get_dimension_of_a_cell(std::size_t cell) const
Definition: Bitmap_cubical_complex_base.h:917
unsigned dimension() const
Definition: Bitmap_cubical_complex_base.h:227
Top_dimensional_cells_iterator top_dimensional_cells_iterator_begin()
Definition: Bitmap_cubical_complex_base.h:390
Top_dimensional_cells_range top_dimensional_cells_range()
Definition: Bitmap_cubical_complex_base.h:423
virtual std::vector< std::size_t > get_boundary_of_a_cell(std::size_t cell) const
Definition: Bitmap_cubical_complex_base.h:850
Coboundary_range coboundary_range(std::size_t sh)
Definition: Bitmap_cubical_complex_base.h:309
All_cells_range all_cells_range() const
Definition: Bitmap_cubical_complex_base.h:285
std::pair< T, T > min_max_filtration()
Definition: Bitmap_cubical_complex_base.h:646
Top_dimensional_cells_iterator top_dimensional_cells_iterator_end()
Definition: Bitmap_cubical_complex_base.h:398
std::vector< std::size_t >::const_iterator Boundary_iterator
Definition: Bitmap_cubical_complex_base.h:290
size_t get_top_dimensional_coface_of_a_cell(size_t splx)
Definition: Bitmap_cubical_complex_base.h:715
All_cells_iterator all_cells_iterator_end() const
Definition: Bitmap_cubical_complex_base.h:277
T & get_cell_data(std::size_t cell)
Definition: Bitmap_cubical_complex_base.h:960
void impose_lower_star_filtration_from_vertices()
Definition: Bitmap_cubical_complex_base.h:1022
Boundary_range boundary_range(std::size_t sh)
Definition: Bitmap_cubical_complex_base.h:297
virtual int compute_incidence_between_cells(std::size_t coface, std::size_t face) const
Definition: Bitmap_cubical_complex_base.h:157
size_t get_vertex_of_a_cell(size_t splx)
Definition: Bitmap_cubical_complex_base.h:728
All_cells_iterator all_cells_iterator_begin() const
Definition: Bitmap_cubical_complex_base.h:272
virtual ~Bitmap_cubical_complex_base()
Definition: Bitmap_cubical_complex_base.h:88