Alpha_complex.h
1 /* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
2  * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
3  * Author(s): Vincent Rouvreau
4  *
5  * Copyright (C) 2015 Inria
6  *
7  * Modification(s):
8  * - 2019/08 Vincent Rouvreau: Fix issue #10 for CGAL and Eigen3
9  * - YYYY/MM Author: Description of the modification
10  */
11 
12 #ifndef ALPHA_COMPLEX_H_
13 #define ALPHA_COMPLEX_H_
14 
15 #include <gudhi/Alpha_complex/Alpha_kernel_d.h>
16 #include <gudhi/Debug_utils.h>
17 // to construct Alpha_complex from a OFF file of points
18 #include <gudhi/Points_off_io.h>
19 
20 #include <cmath> // isnan, fmax
21 #include <memory> // for std::unique_ptr
22 #include <cstddef> // for std::size_t
23 
24 #include <CGAL/Delaunay_triangulation.h>
25 #include <CGAL/Regular_triangulation.h> // aka. Weighted Delaunay triangulation
26 #include <CGAL/Epeck_d.h> // For EXACT or SAFE version
27 #include <CGAL/Epick_d.h> // For FAST version
28 #include <CGAL/Spatial_sort_traits_adapter_d.h>
29 #include <CGAL/property_map.h> // for CGAL::Identity_property_map
30 #include <CGAL/version.h> // for CGAL_VERSION_NR
31 #include <CGAL/NT_converter.h>
32 
33 #include <Eigen/src/Core/util/Macros.h> // for EIGEN_VERSION_AT_LEAST
34 
35 #include <boost/range/size.hpp>
36 #include <boost/range/combine.hpp>
37 #include <boost/range/adaptor/transformed.hpp>
38 
39 #include <iostream>
40 #include <vector>
41 #include <string>
42 #include <limits> // NaN
43 #include <map>
44 #include <utility> // std::pair
45 #include <stdexcept>
46 #include <numeric> // for std::iota
47 #include <algorithm> // for std::sort
48 #include <type_traits> // for std::is_same_v
49 
50 // Make compilation fail - required for external projects - https://github.com/GUDHI/gudhi-devel/issues/10
51 #if CGAL_VERSION_NR < 1041101000
52 # error Alpha_complex is only available for CGAL >= 4.11
53 #endif
54 
55 #if !EIGEN_VERSION_AT_LEAST(3,1,0)
56 # error Alpha_complex is only available for Eigen3 >= 3.1.0 installed with CGAL
57 #endif
58 
59 namespace Gudhi {
60 
61 namespace alpha_complex {
62 
63 template<typename D> struct Is_Epeck_D { static const bool value = false; };
64 template<typename D> struct Is_Epeck_D<CGAL::Epeck_d<D>> { static const bool value = true; };
65 
102 template<class Kernel = CGAL::Epeck_d<CGAL::Dynamic_dimension_tag>, bool Weighted = false>
104  private:
105  // Vertex_handle internal type (required by triangulation_ and vertices_).
106  using Internal_vertex_handle = std::ptrdiff_t;
107 
108  public:
110  using Geom_traits = std::conditional_t<Weighted, CGAL::Regular_triangulation_traits_adapter<Kernel>, Kernel>;
111 
112  // CGAL::Triangulation_ds_full_cell<void, CGAL::TDS_full_cell_mirror_storage_policy> has been enhanced for CGAL >= 6.0
113  // But faster only with static dimensions
114  using Triangulation_full_cell = std::conditional_t<std::is_same_v<typename Kernel::Dimension, CGAL::Dynamic_dimension_tag>,
115  CGAL::Triangulation_ds_full_cell<>,
116  CGAL::Triangulation_ds_full_cell<void, CGAL::TDS_full_cell_mirror_storage_policy>>;
117  // Add an int in TDS to save point index in the structure
118  using TDS = CGAL::Triangulation_data_structure<typename Geom_traits::Dimension,
119  CGAL::Triangulation_vertex<Geom_traits, Internal_vertex_handle>,
120  Triangulation_full_cell >;
121 
123  using Triangulation = std::conditional_t<Weighted, CGAL::Regular_triangulation<Kernel, TDS>,
124  CGAL::Delaunay_triangulation<Kernel, TDS>>;
125 
128 
129  // Numeric type of coordinates in the kernel
130  using FT = typename A_kernel_d::FT;
131 
135  using Sphere = typename A_kernel_d::Sphere;
136 
138  using Point_d = typename Geom_traits::Point_d;
139 
140  private:
141  // Vertex_iterator type from CGAL.
142  using CGAL_vertex_iterator = typename Triangulation::Vertex_iterator;
143 
144  // Structure to switch from simplex tree vertex handle to CGAL vertex iterator.
145  using Vector_vertex_iterator = std::vector< CGAL_vertex_iterator >;
146 
147  private:
150  Vector_vertex_iterator vertex_handle_to_iterator_;
152  std::unique_ptr<Triangulation> triangulation_;
154  A_kernel_d kernel_;
158  std::vector<Internal_vertex_handle> vertices_;
159 
161  std::vector<Sphere> cache_, old_cache_;
162 
163  public:
173  Alpha_complex(const std::string& off_file_name) {
174  Gudhi::Points_off_reader<Point_d> off_reader(off_file_name);
175  if (!off_reader.is_valid()) {
176  std::cerr << "Alpha_complex - Unable to read file " << off_file_name << "\n";
177  exit(-1); // ----- >>
178  }
179 
180  init_from_range(off_reader.get_point_cloud());
181  }
182 
193  template<typename InputPointRange >
194  Alpha_complex(const InputPointRange& points) {
195  init_from_range(points);
196  }
197 
210  template <typename InputPointRange, typename WeightRange>
211  Alpha_complex(const InputPointRange& points, WeightRange weights) {
212  static_assert(Weighted, "This constructor is not available for non-weighted versions of Alpha_complex");
213  // FIXME: this test is only valid if we have a forward range
214  GUDHI_CHECK(boost::size(weights) == boost::size(points),
215  std::invalid_argument("Points number in range different from weights range number"));
216  auto weighted_points = boost::range::combine(points, weights)
217  | boost::adaptors::transformed([](auto const&t){return Point_d(boost::get<0>(t), boost::get<1>(t));});
218  init_from_range(weighted_points);
219  }
220 
221  // Forbid copy/move constructor/assignment operator
222  Alpha_complex(const Alpha_complex& other) = delete;
223  Alpha_complex& operator= (const Alpha_complex& other) = delete;
224  Alpha_complex (Alpha_complex&& other) = delete;
225  Alpha_complex& operator= (Alpha_complex&& other) = delete;
226 
229  std::size_t num_vertices() const {
230  if (triangulation_ == nullptr)
231  return 0;
232  else
233  return triangulation_->number_of_vertices();
234  }
235 
242  const Point_d& get_point(std::size_t vertex) const {
243  auto it = vertex_handle_to_iterator_.at(vertex);
244  if (it == nullptr) throw std::out_of_range("This vertex is missing, maybe hidden by a duplicate or another heavier point.");
245  return it->point();
246  }
247 
248  private:
249  template<typename InputPointRange >
250  void init_from_range(const InputPointRange& points) {
251  #if CGAL_VERSION_NR < 1050000000
252  if (Is_Epeck_D<Kernel>::value)
253  std::cerr << "It is strongly advised to use a CGAL version >= 5.0 with Epeck_d Kernel for performance reasons."
254  << std::endl;
255  #endif
256 
257 #if CGAL_VERSION_NR < 1050101000
258  // Make compilation fail if weighted and CGAL < 5.1.0
259  static_assert(!Weighted, "Weighted Alpha_complex is only available for CGAL >= 5.1.0");
260 #endif
261 
262  auto first = std::begin(points);
263  auto last = std::end(points);
264 
265  if (first != last) {
266  // Delaunay triangulation init with point dimension.
267  triangulation_ = std::make_unique<Triangulation>(kernel_.get_dimension(*first));
268 
269  std::vector<Point_d> point_cloud(first, last);
270 
271  // Creates a vector {0, 1, ..., N-1}
272  std::vector<Internal_vertex_handle> indices(boost::counting_iterator<Internal_vertex_handle>(0),
273  boost::counting_iterator<Internal_vertex_handle>(point_cloud.size()));
274 
275  using Point_property_map = boost::iterator_property_map<typename std::vector<Point_d>::iterator,
276  CGAL::Identity_property_map<Internal_vertex_handle>>;
277  using Search_traits_d = CGAL::Spatial_sort_traits_adapter_d<Geom_traits, Point_property_map>;
278 
279  CGAL::spatial_sort(indices.begin(), indices.end(), Search_traits_d(std::begin(point_cloud)));
280 
281  typename Triangulation::Full_cell_handle hint;
282  for (auto index : indices) {
283  typename Triangulation::Vertex_handle pos = triangulation_->insert(point_cloud[index], hint);
284  if (pos != nullptr) {
285  // Save index value as data to retrieve it after insertion
286  pos->data() = index;
287  hint = pos->full_cell();
288  }
289  }
290  // --------------------------------------------------------------------------------------------
291  // structure to retrieve CGAL points from vertex handle - one vertex handle per point.
292  // Needs to be constructed before as vertex handles arrives in no particular order.
293  vertex_handle_to_iterator_.resize(point_cloud.size());
294  // List of sorted unique vertices in the triangulation. We take advantage of the existing loop to construct it
295  // Vertices list avoids quadratic complexity with the Simplex_tree. We should not fill it up with Toplex_map e.g.
296  vertices_.reserve(triangulation_->number_of_vertices());
297  // Loop on triangulation vertices list
298  for (CGAL_vertex_iterator vit = triangulation_->vertices_begin(); vit != triangulation_->vertices_end(); ++vit) {
299  if (!triangulation_->is_infinite(*vit)) {
300 #ifdef DEBUG_TRACES
301  std::clog << "Vertex insertion - " << vit->data() << " -> " << vit->point() << std::endl;
302 #endif // DEBUG_TRACES
303  vertex_handle_to_iterator_[vit->data()] = vit;
304  vertices_.push_back(vit->data());
305  }
306  }
307  std::sort(vertices_.begin(), vertices_.end());
308  // --------------------------------------------------------------------------------------------
309  }
310  }
311 
318  const Point_d& get_point_(std::size_t vertex) const {
319  return vertex_handle_to_iterator_[vertex]->point();
320  }
321 
323  template<class SimplicialComplexForAlpha>
324  auto& get_cache(SimplicialComplexForAlpha& cplx, typename SimplicialComplexForAlpha::Simplex_handle s) {
325  auto k = cplx.key(s);
326  if(k==cplx.null_key()){
327  k = cache_.size();
328  cplx.assign_key(s, k);
329  // Using a transform_range is slower, currently.
330  thread_local std::vector<Point_d> v;
331  v.clear();
332  for (auto vertex : cplx.simplex_vertex_range(s))
333  v.push_back(get_point_(vertex));
334  cache_.emplace_back(kernel_.get_sphere(v.cbegin(), v.cend()));
335  }
336  return cache_[k];
337  }
338 
340  template<class SimplicialComplexForAlpha>
341  auto radius(SimplicialComplexForAlpha& cplx, typename SimplicialComplexForAlpha::Simplex_handle s) {
342  auto k = cplx.key(s);
343  if(k!=cplx.null_key())
344  return kernel_.get_squared_radius(old_cache_[k]);
345  // Using a transform_range is slower, currently.
346  thread_local std::vector<Point_d> v;
347  v.clear();
348  for (auto vertex : cplx.simplex_vertex_range(s))
349  v.push_back(get_point_(vertex));
350  return kernel_.get_squared_radius(v.cbegin(), v.cend());
351  }
352 
353  public:
377  template <typename SimplicialComplexForAlpha,
380  Filtration_value max_alpha_square = std::numeric_limits<Filtration_value>::infinity(),
381  bool exact = false,
382  bool default_filtration_value = false) {
383  // Filtration_value must be capable to represent the special value "Not-A-Number"
384  static_assert(std::numeric_limits<Filtration_value>::has_quiet_NaN);
385  // To support more general types for Filtration_value
386  using std::isnan;
387 
388  // From SimplicialComplexForAlpha type required to insert into a simplicial complex (with or without subfaces).
390  using Simplex_handle = typename SimplicialComplexForAlpha::Simplex_handle;
391  using Vector_vertex = std::vector<Vertex_handle>;
392 
393  if (triangulation_ == nullptr) {
394  std::cerr << "Alpha_complex cannot create_complex from a NULL triangulation\n";
395  return false; // ----- >>
396  }
397  if (triangulation_->maximal_dimension() < 1) {
398  std::cerr << "Alpha_complex cannot create_complex from a zero-dimension triangulation\n";
399  return false; // ----- >>
400  }
401  if (complex.num_vertices() > 0) {
402  std::cerr << "Alpha_complex create_complex - complex is not empty\n";
403  return false; // ----- >>
404  }
405 
406  // --------------------------------------------------------------------------------------------
407  // Simplex_tree construction from loop on triangulation finite full cells list
408  if (num_vertices() > 0) {
409  std::vector<Vertex_handle> one_vertex(1);
410  for (auto vertex : vertices_) {
411 #ifdef DEBUG_TRACES
412  std::clog << "SimplicialComplex insertion " << vertex << std::endl;
413 #endif // DEBUG_TRACES
414  one_vertex[0] = vertex;
415  complex.insert_simplex_and_subfaces(one_vertex, std::numeric_limits<Filtration_value>::quiet_NaN());
416  }
417 
418  for (auto cit = triangulation_->finite_full_cells_begin();
419  cit != triangulation_->finite_full_cells_end();
420  ++cit) {
421  Vector_vertex vertexVector;
422 #ifdef DEBUG_TRACES
423  std::clog << "SimplicialComplex insertion ";
424 #endif // DEBUG_TRACES
425  for (auto vit = cit->vertices_begin(); vit != cit->vertices_end(); ++vit) {
426  if (*vit != nullptr) {
427 #ifdef DEBUG_TRACES
428  std::clog << " " << (*vit)->data();
429 #endif // DEBUG_TRACES
430  // Vector of vertex construction for simplex_tree structure
431  vertexVector.push_back((*vit)->data());
432  }
433  }
434 #ifdef DEBUG_TRACES
435  std::clog << std::endl;
436 #endif // DEBUG_TRACES
437  // Insert each simplex and its subfaces in the simplex tree - filtration is NaN
438  complex.insert_simplex_and_subfaces(vertexVector, std::numeric_limits<Filtration_value>::quiet_NaN());
439  }
440  }
441  // --------------------------------------------------------------------------------------------
442 
443  if (!default_filtration_value) {
444  CGAL::NT_converter<FT, Filtration_value> cgal_converter;
445  // --------------------------------------------------------------------------------------------
446  // ### For i : d -> 0
447  for (int decr_dim = triangulation_->maximal_dimension(); decr_dim >= 0; decr_dim--) {
448  // ### Foreach Sigma of dim i
449  for (Simplex_handle f_simplex : complex.skeleton_simplex_range(decr_dim)) {
450  int f_simplex_dim = complex.dimension(f_simplex);
451  if (decr_dim == f_simplex_dim) {
452  // ### If filt(Sigma) is NaN : filt(Sigma) = alpha(Sigma)
453  if (isnan(complex.filtration(f_simplex))) {
454  Filtration_value alpha_complex_filtration = 0.0;
455  // No need to compute squared_radius on a non-weighted single point - alpha is 0.0
456  if (Weighted || f_simplex_dim > 0) {
457  auto const& sqrad = radius(complex, f_simplex);
458 #if CGAL_VERSION_NR >= 1050000000
459  if(exact) CGAL::exact(sqrad);
460 #endif
461  alpha_complex_filtration = cgal_converter(sqrad);
462  }
463  complex.assign_filtration(f_simplex, alpha_complex_filtration);
464 #ifdef DEBUG_TRACES
465  std::clog << "filt(Sigma) is NaN : filt(Sigma) =" << complex.filtration(f_simplex) << std::endl;
466 #endif // DEBUG_TRACES
467  }
468  // No need to propagate further, unweighted points all have value 0
469  if (decr_dim > !Weighted)
470  propagate_alpha_filtration(complex, f_simplex);
471  }
472  }
473  old_cache_ = std::move(cache_);
474  cache_.clear();
475  }
476  // --------------------------------------------------------------------------------------------
477 
478  // --------------------------------------------------------------------------------------------
479  if (!exact)
480  // As Alpha value is an approximation, we have to make filtration non decreasing while increasing the dimension
481  // Only in not exact version, cf. https://github.com/GUDHI/gudhi-devel/issues/57
483  // Remove all simplices that have a filtration value greater than max_alpha_square
484  complex.prune_above_filtration(max_alpha_square);
485  // --------------------------------------------------------------------------------------------
486  }
487  return true;
488  }
489 
490  private:
491  template <typename SimplicialComplexForAlpha, typename Simplex_handle>
492  void propagate_alpha_filtration(SimplicialComplexForAlpha& complex, Simplex_handle f_simplex) {
493  // From SimplicialComplexForAlpha type required to assign filtration values.
495  // To support more general types for Filtration_value
496  using std::isnan;
497 
498  // ### Foreach Tau face of Sigma
499  for (auto face_opposite_vertex : complex.boundary_opposite_vertex_simplex_range(f_simplex)) {
500  auto f_boundary = face_opposite_vertex.first;
501 #ifdef DEBUG_TRACES
502  std::clog << " | --------------------------------------------------\n";
503  std::clog << " | Tau ";
504  for (auto vertex : complex.simplex_vertex_range(f_boundary)) {
505  std::clog << vertex << " ";
506  }
507  std::clog << "is a face of Sigma\n";
508  std::clog << " | isnan(complex.filtration(Tau)=" << isnan(complex.filtration(f_boundary)) << std::endl;
509 #endif // DEBUG_TRACES
510  // ### If filt(Tau) is not NaN
511  if (!isnan(complex.filtration(f_boundary))) {
512  // ### filt(Tau) = fmin(filt(Tau), filt(Sigma))
513  Filtration_value alpha_complex_filtration = fmin(complex.filtration(f_boundary),
514  complex.filtration(f_simplex));
515  complex.assign_filtration(f_boundary, alpha_complex_filtration);
516 #ifdef DEBUG_TRACES
517  std::clog << " | filt(Tau) = fmin(filt(Tau), filt(Sigma)) = " << complex.filtration(f_boundary) << std::endl;
518 #endif // DEBUG_TRACES
519  // ### Else
520  } else {
521  auto const& cache=get_cache(complex, f_boundary);
522  bool is_gab = kernel_.is_gabriel(cache, get_point_(face_opposite_vertex.second));
523 #ifdef DEBUG_TRACES
524  std::clog << " | Tau is_gabriel(Sigma)=" << is_gab << " - vertexForGabriel=" << face_opposite_vertex.second << std::endl;
525 #endif // DEBUG_TRACES
526  // ### If Tau is not Gabriel of Sigma
527  if (false == is_gab) {
528  // ### filt(Tau) = filt(Sigma)
529  Filtration_value alpha_complex_filtration = complex.filtration(f_simplex);
530  complex.assign_filtration(f_boundary, alpha_complex_filtration);
531 #ifdef DEBUG_TRACES
532  std::clog << " | filt(Tau) = filt(Sigma) = " << complex.filtration(f_boundary) << std::endl;
533 #endif // DEBUG_TRACES
534  }
535  }
536  }
537  }
538 };
539 
540 } // namespace alpha_complex
541 
542 namespace alphacomplex = alpha_complex;
543 
544 } // namespace Gudhi
545 
546 #endif // ALPHA_COMPLEX_H_
OFF file reader implementation in order to read points from an OFF file.
Definition: Points_off_io.h:122
const std::vector< Point_d > & get_point_cloud() const
Point cloud getter.
Definition: Points_off_io.h:158
bool is_valid() const
Returns if the OFF file read operation was successful or not.
Definition: Points_off_io.h:150
Alpha complex data structure.
Definition: Alpha_complex.h:103
bool create_complex(SimplicialComplexForAlpha &complex, Filtration_value max_alpha_square=std::numeric_limits< Filtration_value >::infinity(), bool exact=false, bool default_filtration_value=false)
Inserts all Delaunay triangulation into the simplicial complex. It also computes the filtration value...
Definition: Alpha_complex.h:379
std::conditional_t< Weighted, CGAL::Regular_triangulation< Kernel, TDS >, CGAL::Delaunay_triangulation< Kernel, TDS > > Triangulation
A (Weighted or not) Delaunay triangulation of a set of points in .
Definition: Alpha_complex.h:124
typename A_kernel_d::Sphere Sphere
Sphere is a std::pair<Kernel::Point_d, Kernel::FT> (aka. circurmcenter and squared radius)....
Definition: Alpha_complex.h:135
Alpha_complex(const InputPointRange &points, WeightRange weights)
Alpha_complex constructor from a list of points and weights.
Definition: Alpha_complex.h:211
std::conditional_t< Weighted, CGAL::Regular_triangulation_traits_adapter< Kernel >, Kernel > Geom_traits
Geometric traits class that provides the geometric types and predicates needed by the triangulations.
Definition: Alpha_complex.h:110
const Point_d & get_point(std::size_t vertex) const
get_point returns the point corresponding to the vertex given as parameter.
Definition: Alpha_complex.h:242
Alpha_complex(const std::string &off_file_name)
Alpha_complex constructor from an OFF file name.
Definition: Alpha_complex.h:173
typename Geom_traits::Point_d Point_d
A point, or a weighted point in Euclidean space.
Definition: Alpha_complex.h:138
std::size_t num_vertices() const
Returns the number of finite vertices in the triangulation.
Definition: Alpha_complex.h:229
Alpha_complex(const InputPointRange &points)
Alpha_complex constructor from a list of points.
Definition: Alpha_complex.h:194
Alpha complex kernel container.
Definition: Alpha_kernel_d.h:42
Gudhi namespace.
Definition: SimplicialComplexForAlpha.h:14
Value type for a filtration function on a cell complex.
Definition: FiltrationValue.h:20
The concept SimplicialComplexForAlpha describes the requirements for a type to implement a simplicial...
Definition: SimplicialComplexForAlpha.h:21
Skeleton_simplex_range skeleton_simplex_range
Returns a range over the simplices of the skeleton of the simplicial complex, for a given dimension.
Definition: SimplicialComplexForAlpha.h:70
int assign_filtration(Simplex_handle simplex, Filtration_value filtration)
void prune_above_filtration(Filtration_value filtration)
Simplex_vertex_range simplex_vertex_range(Simplex_handle const &simplex)
Returns a range over vertices of a given simplex.
void insert_simplex_and_subfaces(std::vector< Vertex_handle > const &vertex_range, Filtration_value filtration)
Inserts a simplex with vertices from a given simplex (represented by a vector of Vertex_handle) in th...
unspecified Simplex_handle
Definition: SimplicialComplexForAlpha.h:23
unspecified Vertex_handle
Definition: SimplicialComplexForAlpha.h:25
unspecified Filtration_value
Definition: SimplicialComplexForAlpha.h:27
Handle type for the vertices of a cell complex.
Definition: VertexHandle.h:15