13#ifndef ALPHA_COMPLEX_H_ 
   14#define ALPHA_COMPLEX_H_ 
   16#include <gudhi/Alpha_complex/Alpha_kernel_d.h> 
   17#include <gudhi/Debug_utils.h> 
   19#include <gudhi/Points_off_io.h> 
   21#include <CGAL/Delaunay_triangulation.h> 
   22#include <CGAL/Regular_triangulation.h>   
   23#include <CGAL/Epeck_d.h>   
   24#include <CGAL/Epick_d.h>   
   25#include <CGAL/Spatial_sort_traits_adapter_d.h> 
   26#include <CGAL/property_map.h>   
   27#include <CGAL/version.h>   
   28#include <CGAL/NT_converter.h> 
   30#include <Eigen/src/Core/util/Macros.h>   
   32#include <boost/range/size.hpp> 
   33#include <boost/range/combine.hpp> 
   34#include <boost/range/adaptor/transformed.hpp> 
   51#if CGAL_VERSION_NR < 1041101000 
   52# error Alpha_complex is only available for CGAL >= 4.11 
   55#if !EIGEN_VERSION_AT_LEAST(3,1,0) 
   56# error Alpha_complex is only available for Eigen3 >= 3.1.0 installed with CGAL 
   61namespace alpha_complex {
 
   63template<
typename D> 
struct Is_Epeck_D { 
static const bool value = 
false; };
 
   64template<
typename D> 
struct Is_Epeck_D<CGAL::Epeck_d<D>> { 
static const bool value = 
true; };
 
  102template<
class Kernel = CGAL::Epeck_d<CGAL::Dynamic_dimension_tag>, 
bool Weighted = false>
 
  106  using Internal_vertex_handle = std::ptrdiff_t;
 
  110  using Geom_traits = std::conditional_t<Weighted, CGAL::Regular_triangulation_traits_adapter<Kernel>, Kernel>;
 
  114  using Triangulation_full_cell = std::conditional_t<std::is_same_v<typename Kernel::Dimension, CGAL::Dynamic_dimension_tag>,
 
  115                                                     CGAL::Triangulation_ds_full_cell<>,
 
  116                                                     CGAL::Triangulation_ds_full_cell<void, CGAL::TDS_full_cell_mirror_storage_policy>>;
 
  118  using TDS = CGAL::Triangulation_data_structure<
typename Geom_traits::Dimension,
 
  119                                                 CGAL::Triangulation_vertex<Geom_traits, Internal_vertex_handle>,
 
  120                                                 Triangulation_full_cell >;
 
  123  using Triangulation = std::conditional_t<Weighted, CGAL::Regular_triangulation<Kernel, TDS>,
 
  124                                                     CGAL::Delaunay_triangulation<Kernel, TDS>>;
 
  130  using FT = 
typename A_kernel_d::FT;
 
  135  using Sphere = 
typename A_kernel_d::Sphere;
 
  138  using Point_d = 
typename Geom_traits::Point_d;
 
  142  using CGAL_vertex_iterator = 
typename Triangulation::Vertex_iterator;
 
  145  using Vector_vertex_iterator = std::vector< CGAL_vertex_iterator >;
 
  150  Vector_vertex_iterator vertex_handle_to_iterator_;
 
  152  std::unique_ptr<Triangulation> triangulation_;
 
  158  std::vector<Internal_vertex_handle> vertices_;
 
  161  std::vector<Sphere> cache_, old_cache_;
 
  176      std::cerr << 
"Alpha_complex - Unable to read file " << off_file_name << 
"\n";
 
  193  template<
typename InputPo
intRange >
 
  195    init_from_range(points);
 
  210  template <
typename InputPo
intRange, 
typename WeightRange>
 
  212    static_assert(Weighted, 
"This constructor is not available for non-weighted versions of Alpha_complex");
 
  214    GUDHI_CHECK(boost::size(weights) == boost::size(points),
 
  215                std::invalid_argument(
"Points number in range different from weights range number"));
 
  216    auto weighted_points = boost::range::combine(points, weights)
 
  217      | boost::adaptors::transformed([](
auto const&t){
return Point_d(boost::get<0>(t), boost::get<1>(t));});
 
  218    init_from_range(weighted_points);
 
  230    if (triangulation_ == 
nullptr)
 
  233      return triangulation_->number_of_vertices();
 
  243    auto it = vertex_handle_to_iterator_.at(vertex);
 
  244    if (it == 
nullptr) 
throw std::out_of_range(
"This vertex is missing, maybe hidden by a duplicate or another heavier point.");
 
  249  template<
typename InputPo
intRange >
 
  250  void init_from_range(
const InputPointRange& points) {
 
  251    #if CGAL_VERSION_NR < 1050000000 
  252    if (Is_Epeck_D<Kernel>::value)
 
  253      std::cerr << 
"It is strongly advised to use a CGAL version >= 5.0 with Epeck_d Kernel for performance reasons." 
  257#if CGAL_VERSION_NR < 1050101000 
  259    static_assert(!Weighted, 
"Weighted Alpha_complex is only available for CGAL >= 5.1.0");
 
  262    auto first = std::begin(points);
 
  263    auto last = std::end(points);
 
  267      triangulation_ = std::make_unique<Triangulation>(kernel_.get_dimension(*first));
 
  269      std::vector<Point_d> point_cloud(first, last);
 
  272      std::vector<Internal_vertex_handle> indices(boost::counting_iterator<Internal_vertex_handle>(0),
 
  273                                                  boost::counting_iterator<Internal_vertex_handle>(point_cloud.size()));
 
  275      using Point_property_map = boost::iterator_property_map<typename std::vector<Point_d>::iterator,
 
  276                                                              CGAL::Identity_property_map<Internal_vertex_handle>>;
 
  277      using Search_traits_d = CGAL::Spatial_sort_traits_adapter_d<Geom_traits, Point_property_map>;
 
  279      CGAL::spatial_sort(indices.begin(), indices.end(), Search_traits_d(std::begin(point_cloud)));
 
  281      typename Triangulation::Full_cell_handle hint;
 
  282      for (
auto index : indices) {
 
  283        typename Triangulation::Vertex_handle pos = triangulation_->insert(point_cloud[index], hint);
 
  284        if (pos != 
nullptr) {
 
  287          hint = pos->full_cell();
 
  293      vertex_handle_to_iterator_.resize(point_cloud.size());
 
  296      vertices_.reserve(triangulation_->number_of_vertices());
 
  298      for (CGAL_vertex_iterator vit = triangulation_->vertices_begin(); vit != triangulation_->vertices_end(); ++vit) {
 
  299        if (!triangulation_->is_infinite(*vit)) {
 
  301          std::clog << 
"Vertex insertion - " << vit->data() << 
" -> " << vit->point() << std::endl;
 
  303          vertex_handle_to_iterator_[vit->data()] = vit;
 
  304          vertices_.push_back(vit->data());
 
  307      std::sort(vertices_.begin(), vertices_.end());
 
  318  const Point_d& get_point_(std::size_t vertex)
 const {
 
  319    return vertex_handle_to_iterator_[vertex]->point();
 
  323  template<
class SimplicialComplexForAlpha>
 
  325    auto k = cplx.key(s);
 
  326    if(k==cplx.null_key()){
 
  328      cplx.assign_key(s, k);
 
  330      thread_local std::vector<Point_d> v;
 
  332      for (
auto vertex : cplx.simplex_vertex_range(s))
 
  333        v.push_back(get_point_(vertex));
 
  334      cache_.emplace_back(kernel_.get_sphere(v.cbegin(), v.cend()));
 
  340  template<
class SimplicialComplexForAlpha>
 
  342    auto k = cplx.key(s);
 
  343    if(k!=cplx.null_key())
 
  344      return kernel_.get_squared_radius(old_cache_[k]);
 
  346    thread_local std::vector<Point_d> v;
 
  348    for (
auto vertex : cplx.simplex_vertex_range(s))
 
  349      v.push_back(get_point_(vertex));
 
  350    return kernel_.get_squared_radius(v.cbegin(), v.cend());
 
  383  template <
bool Output_squared_values = 
true,
 
  384            typename SimplicialComplexForAlpha,
 
  387                      Filtration_value max_alpha_square = std::numeric_limits<Filtration_value>::infinity(),
 
  389                      bool default_filtration_value = 
false) {
 
  391    static_assert(std::numeric_limits<Filtration_value>::has_quiet_NaN);
 
  393    if constexpr(Weighted && !Output_squared_values)
 
  394      throw std::invalid_argument(
"Weighted Alpha complex cannot output square root filtration values");
 
  401    using Vector_vertex = std::vector<Vertex_handle>;
 
  406    if (triangulation_ == 
nullptr) {
 
  407      std::cerr << 
"Alpha_complex cannot create_complex from a NULL triangulation\n";
 
  410    if (triangulation_->maximal_dimension() < 1) {
 
  411      std::cerr << 
"Alpha_complex cannot create_complex from a zero-dimension triangulation\n";
 
  415      std::cerr << 
"Alpha_complex create_complex - complex is not empty\n";
 
  422      std::vector<Vertex_handle> one_vertex(1);
 
  423      for (
auto vertex : vertices_) {
 
  425        std::clog << 
"SimplicialComplex insertion " << vertex << std::endl;
 
  427        one_vertex[0] = vertex;
 
  431      for (
auto cit = triangulation_->finite_full_cells_begin();
 
  432           cit != triangulation_->finite_full_cells_end();
 
  434        Vector_vertex vertexVector;
 
  436        std::clog << 
"SimplicialComplex insertion ";
 
  438        for (
auto vit = cit->vertices_begin(); vit != cit->vertices_end(); ++vit) {
 
  439          if (*vit != 
nullptr) {
 
  441            std::clog << 
" " << (*vit)->data();
 
  444            vertexVector.push_back((*vit)->data());
 
  448        std::clog << std::endl;
 
  455    if (!default_filtration_value) {
 
  456      CGAL::NT_converter<FT, Filtration_value> cgal_converter;
 
  459      for (
int decr_dim = triangulation_->maximal_dimension(); decr_dim >= 0; decr_dim--) {
 
  462          int f_simplex_dim = complex.
dimension(f_simplex);
 
  463          if (decr_dim == f_simplex_dim) {
 
  465            if (isnan(complex.filtration(f_simplex))) {
 
  468              if (Weighted || f_simplex_dim > 0) {
 
  469                auto const& sqrad = radius(complex, f_simplex);
 
  470#if CGAL_VERSION_NR >= 1050000000 
  471                if(exact) CGAL::exact(sqrad);
 
  473                alpha_complex_filtration = cgal_converter(sqrad);
 
  474                if constexpr (!Output_squared_values) {
 
  475                  alpha_complex_filtration = sqrt(alpha_complex_filtration);
 
  480              std::clog << 
"filt(Sigma) is NaN : filt(Sigma) =" << complex.filtration(f_simplex) << std::endl;
 
  484            if (decr_dim > !Weighted)
 
  485              propagate_alpha_filtration(complex, f_simplex);
 
  488        old_cache_ = std::move(cache_);
 
  499      if constexpr (!Output_squared_values) {
 
  510  template <
typename SimplicialComplexForAlpha, 
typename Simplex_handle>
 
  518    for (
auto face_opposite_vertex : complex.boundary_opposite_vertex_simplex_range(f_simplex)) {
 
  519      auto f_boundary = face_opposite_vertex.first;
 
  521      std::clog << 
" | --------------------------------------------------\n";
 
  522      std::clog << 
" | Tau ";
 
  524        std::clog << vertex << 
" ";
 
  526      std::clog << 
"is a face of Sigma\n";
 
  527      std::clog << 
" | isnan(complex.filtration(Tau)=" << isnan(complex.filtration(f_boundary)) << std::endl;
 
  530      if (!isnan(complex.filtration(f_boundary))) {
 
  532        Filtration_value alpha_complex_filtration = fmin(complex.filtration(f_boundary),
 
  533                                                                             complex.filtration(f_simplex));
 
  536        std::clog << 
" | filt(Tau) = fmin(filt(Tau), filt(Sigma)) = " << complex.filtration(f_boundary) << std::endl;
 
  540        auto const& cache=get_cache(complex, f_boundary);
 
  541        bool is_gab = kernel_.is_gabriel(cache, get_point_(face_opposite_vertex.second));
 
  543        std::clog << 
" | Tau is_gabriel(Sigma)=" << is_gab << 
" - vertexForGabriel=" << face_opposite_vertex.second << std::endl;
 
  546        if (
false == is_gab) {
 
  551          std::clog << 
" | filt(Tau) = filt(Sigma) = " << complex.filtration(f_boundary) << std::endl;
 
  561namespace alphacomplex = alpha_complex;
 
OFF file reader implementation in order to read points from an OFF file.
Definition: Points_off_io.h:122
 
const std::vector< Point_d > & get_point_cloud() const
Point cloud getter.
Definition: Points_off_io.h:158
 
bool is_valid() const
Returns if the OFF file read operation was successful or not.
Definition: Points_off_io.h:150
 
Alpha complex data structure.
Definition: Alpha_complex.h:103
 
std::conditional_t< Weighted, CGAL::Regular_triangulation< Kernel, TDS >, CGAL::Delaunay_triangulation< Kernel, TDS > > Triangulation
A (Weighted or not) Delaunay triangulation of a set of points in .
Definition: Alpha_complex.h:124
 
typename A_kernel_d::Sphere Sphere
Sphere is a std::pair<Kernel::Point_d, Kernel::FT> (aka. circurmcenter and squared radius)....
Definition: Alpha_complex.h:135
 
Alpha_complex(const InputPointRange &points, WeightRange weights)
Alpha_complex constructor from a list of points and weights.
Definition: Alpha_complex.h:211
 
std::conditional_t< Weighted, CGAL::Regular_triangulation_traits_adapter< Kernel >, Kernel > Geom_traits
Geometric traits class that provides the geometric types and predicates needed by the triangulations.
Definition: Alpha_complex.h:110
 
bool create_complex(SimplicialComplexForAlpha &complex, Filtration_value max_alpha_square=std::numeric_limits< Filtration_value >::infinity(), bool exact=false, bool default_filtration_value=false)
Inserts all Delaunay triangulation into the simplicial complex. It also computes the filtration value...
Definition: Alpha_complex.h:386
 
const Point_d & get_point(std::size_t vertex) const
get_point returns the point corresponding to the vertex given as parameter.
Definition: Alpha_complex.h:242
 
Alpha_complex(const std::string &off_file_name)
Alpha_complex constructor from an OFF file name.
Definition: Alpha_complex.h:173
 
typename Geom_traits::Point_d Point_d
A point, or a weighted point in Euclidean space.
Definition: Alpha_complex.h:138
 
std::size_t num_vertices() const
Returns the number of finite vertices in the triangulation.
Definition: Alpha_complex.h:229
 
Alpha_complex(const InputPointRange &points)
Alpha_complex constructor from a list of points.
Definition: Alpha_complex.h:194
 
Alpha complex kernel container.
Definition: Alpha_kernel_d.h:42
 
Gudhi namespace.
Definition: SimplicialComplexForAlpha.h:14
 
Value type for a filtration function on a cell complex.
Definition: FiltrationValue.h:20
 
The concept SimplicialComplexForAlpha describes the requirements for a type to implement a simplicial...
Definition: SimplicialComplexForAlpha.h:21
 
Skeleton_simplex_range skeleton_simplex_range
Returns a range over the simplices of the skeleton of the simplicial complex, for a given dimension.
Definition: SimplicialComplexForAlpha.h:72
 
int assign_filtration(Simplex_handle simplex, Filtration_value filtration)
 
std::size_t num_vertices()
 
int dimension(Simplex_handle simplex)
 
void prune_above_filtration(Filtration_value filtration)
 
void make_filtration_non_decreasing()
 
Simplex_vertex_range simplex_vertex_range(Simplex_handle const &simplex)
Returns a range over vertices of a given simplex.
 
void insert_simplex_and_subfaces(std::vector< Vertex_handle > const &vertex_range, Filtration_value filtration)
Inserts a simplex with vertices from a given simplex (represented by a vector of Vertex_handle) in th...
 
unspecified Simplex_handle
Definition: SimplicialComplexForAlpha.h:23
 
unspecified Vertex_handle
Definition: SimplicialComplexForAlpha.h:25
 
unspecified Filtration_value
Definition: SimplicialComplexForAlpha.h:29
 
Handle type for the vertices of a cell complex.
Definition: VertexHandle.h:15