#include <CGAL/Epick_d.h>
#include <CGAL/point_generators_d.h>
#include <CGAL/algorithm.h>
#include <CGAL/assertions.h>
 
#include <gudhi/Alpha_complex.h>
#include <gudhi/Persistent_cohomology.h>
#include <gudhi/Simplex_tree.h>
 
#include <iostream>
#include <iterator>
#include <vector>
#include <fstream>  
#include <algorithm>  
 
 
using Kernel = CGAL::Epick_d< CGAL::Dimension_tag<3> >;
using Point = Kernel::Point_d;
 
std::vector<Point> random_points() {
  
  CGAL::Random rng(0);
 
  
  std::vector<Point> points;
 
  
  CGAL::Random_points_on_sphere_d<Point> rand_outside(3, 4.0, rng);
  CGAL::cpp11::copy_n(rand_outside, 1000, std::back_inserter(points));
  
  CGAL::Random_points_in_ball_d<Point> rand_inside(3, 3.0, rng);
  CGAL::cpp11::copy_n(rand_inside, 2000, std::back_inserter(points));
 
  return points;
}
 
struct cmp_intervals_by_dim_then_length {
  explicit cmp_intervals_by_dim_then_length(
Simplex_tree * sc)
 
      : sc_(sc) { }
 
  template<typename Persistent_interval>
  bool operator()(const Persistent_interval & p1, const Persistent_interval & p2) {
    if (sc_->dimension(get < 0 > (p1)) == sc_->dimension(get < 0 > (p2)))
      return (sc_->filtration(get < 1 > (p1)) - sc_->filtration(get < 0 > (p1))
              > sc_->filtration(get < 1 > (p2)) - sc_->filtration(get < 0 > (p2)));
    else
      return (sc_->dimension(get < 0 > (p1)) > sc_->dimension(get < 0 > (p2)));
  }
};
 
int main(int argc, char **argv) {
  std::vector<Point> points = random_points();
 
  std::clog << "Points size=" << points.size() << std::endl;
  
  std::clog << "alpha_complex_from_points" << std::endl;
 
  std::clog << "simplex" << std::endl;
  if (alpha_complex_from_points.create_complex(simplex, 0.6)) {
    std::clog << "simplex" << std::endl;
    
    
    
    std::clog << 
"Simplicial complex is of dimension " << simplex.
dimension() <<
 
    std::clog << 
"Simplex_tree dim: " << simplex.
dimension() << std::endl;
 
 
    
    pcoh.init_coefficients(3);
    pcoh.compute_persistent_cohomology(0.2);
 
    
    cmp_intervals_by_dim_then_length cmp(&simplex);
    auto persistent_pairs = pcoh.get_persistent_pairs();
    std::sort(std::begin(persistent_pairs), std::end(persistent_pairs), cmp);
    for (auto pair : persistent_pairs) {
      std::clog << simplex.
dimension(get<0>(pair)) << 
" "    }
 
    
    std::clog << "The persistent Betti numbers in interval [0.40, 0.41] are : ";
    for (
int dim = 0; dim < simplex.
dimension(); dim++)
 
      std::clog << "b" << dim << " = " << pcoh.persistent_betti_number(dim, 0.40, 0.41) << " ; ";
    std::clog << std::endl;
 
    
    std::vector<int> betti_numbers = pcoh.betti_numbers();
    std::clog << "The Betti numbers are : ";
    for (std::size_t i = 0; i < betti_numbers.size(); i++)
      std::clog << "b" << i << " = " << betti_numbers[i] << " ; ";
    std::clog << std::endl;
  }
  return 0;
}
 
static Filtration_value filtration(Simplex_handle sh)
Returns the filtration value of a simplex.
Definition: Simplex_tree.h:537
size_t num_vertices() const
Returns the number of vertices in the complex.
Definition: Simplex_tree.h:574
int dimension(Simplex_handle sh)
Returns the dimension of a simplex.
Definition: Simplex_tree.h:602
size_t num_simplices()
returns the number of simplices in the simplex_tree.
Definition: Simplex_tree.h:580
Alpha complex data structure.
Definition: Alpha_complex.h:103
Structure representing the coefficient field .
Definition: Field_Zp.h:27
Computes the persistent cohomology of a filtered complex.
Definition: Persistent_cohomology.h:52