#include <boost/program_options.hpp>
 
#include <CGAL/Epick_d.h>
#include <CGAL/Epeck_d.h>
 
#include <gudhi/Alpha_complex.h>
#include <gudhi/Persistent_cohomology.h>
#include <gudhi/Simplex_tree.h>
#include <gudhi/Points_off_io.h>
 
#include <iostream>
#include <string>
#include <limits>  
#include <vector>
#include <fstream>
 
 
void program_options(int argc, char *argv[], std::string &off_file_points, bool &exact, bool &fast,
                     std::string &weight_file, std::string &output_file_diag, 
Filtration_value &alpha_square_max_value,
 
template<class Point_d>
std::vector<Point_d> read_off(const std::string &off_file_points) {
  if (!off_reader.is_valid()) {
    std::cerr << "Alpha_complex - Unable to read file " << off_file_points << "\n";
    exit(-1);  
  }
  return off_reader.get_point_cloud();
}
 
std::vector<double> read_weight_file(const std::string &weight_file) {
  std::vector<double> weights;
  
  std::ifstream weights_ifstr(weight_file);
  if (weights_ifstr.good()) {
    double weight = 0.0;
    
    while (weights_ifstr >> weight) {
      weights.push_back(weight);
    }
  } else {
    std::cerr << "Unable to read weights file " << weight_file << std::endl;
    exit(-1);
  }
  return weights;
}
 
template<class Kernel>
Simplex_tree create_simplex_tree(
const std::string &off_file_points, 
const std::string &weight_file,
 
  auto points = read_off<typename Kernel::Point_d>(off_file_points);
 
  if (weight_file != std::string()) {
    std::vector<double> weights = read_weight_file(weight_file);
    if (points.size() != weights.size()) {
      std::cerr << "Alpha_complex - Inconsistency between number of points (" << points.size()
                << ") and number of weights (" << weights.size() << ")" << "\n";
      exit(-1);  
    }
    
 
    if (!alpha_complex_from_file.create_complex(stree, alpha_square_max_value, exact_version)) {
      std::cerr << "Alpha complex simplicial complex creation failed." << std::endl;
      exit(-1);
    }
  } else {
    
 
    if (!alpha_complex_from_file.create_complex(stree, alpha_square_max_value, exact_version)) {
      std::cerr << "Alpha complex simplicial complex creation failed." << std::endl;
      exit(-1);
    }
  }
  return stree;
}
 
int main(int argc, char **argv) {
  std::string weight_file;
  std::string off_file_points;
  std::string output_file_diag;
  bool exact_version = false;
  bool fast_version = false;
  int coeff_field_characteristic;
 
  program_options(argc, argv, off_file_points, exact_version, fast_version, weight_file, output_file_diag,
                  alpha_square_max_value, coeff_field_characteristic, min_persistence);
 
  if ((exact_version) && (fast_version)) {
    std::cerr << "You cannot set the exact and the fast version." << std::endl;
    exit(-1);
  }
 
  if (fast_version) {
    
    
    using Fast_kernel = CGAL::Epick_d<CGAL::Dynamic_dimension_tag>;
    stree = create_simplex_tree<Fast_kernel>(off_file_points, weight_file, exact_version, alpha_square_max_value);
  } else {
    using Kernel = CGAL::Epeck_d<CGAL::Dynamic_dimension_tag>;
    stree = create_simplex_tree<Kernel>(off_file_points, weight_file, exact_version, alpha_square_max_value);
  }
  
  
  
            << 
" simplices - " << stree.
num_vertices() << 
" vertices." << std::endl;
 
  std::clog << 
"Simplex_tree dim: " << stree.
dimension() << std::endl;
  
      stree);
  
  pcoh.init_coefficients(coeff_field_characteristic);
 
  pcoh.compute_persistent_cohomology(min_persistence);
 
  
  if (output_file_diag.empty()) {
    pcoh.output_diagram();
  } else {
    std::clog << "Result in file: " << output_file_diag << std::endl;
    std::ofstream out(output_file_diag);
    pcoh.output_diagram(out);
    out.close();
  }
  return 0;
}
 
void program_options(int argc, char *argv[], std::string &off_file_points, bool &exact, bool &fast,
                     std::string &weight_file, std::string &output_file_diag, 
Filtration_value &alpha_square_max_value,
  namespace po = boost::program_options;
  po::options_description hidden("Hidden options");
  hidden.add_options()("input-file", po::value<std::string>(&off_file_points),
                       "Name of file containing a point set. Format is one point per line:   X1 ... Xd ");
 
  po::options_description visible("Allowed options", 100);
  visible.add_options()("help,h", "produce help message")(
      "exact,e", po::bool_switch(&exact),
      "To activate exact version of Alpha complex (default is false, not available if fast is set)")(
      "fast,f", po::bool_switch(&fast),
      "To activate fast version of Alpha complex (default is false, not available if exact is set)")(
      "weight-file,w", po::value<std::string>(&weight_file)->default_value(std::string()),
      "Name of file containing a point weights. Format is one weight per line:\n  W1\n  ...\n  Wn ")(
      "output-file,o", po::value<std::string>(&output_file_diag)->default_value(std::string()),
      "Name of file in which the persistence diagram is written. Default print in standard output")(
      "max-alpha-square-value,r", po::value<Filtration_value>(&alpha_square_max_value)
                                      ->default_value(std::numeric_limits<Filtration_value>::infinity()),
      "Maximal alpha square value for the Alpha complex construction.")(
      "field-charac,p", po::value<int>(&coeff_field_characteristic)->default_value(11),
      "Characteristic p of the coefficient field Z/pZ for computing homology.")(
      "min-persistence,m", po::value<Filtration_value>(&min_persistence),
      "Minimal lifetime of homology feature to be recorded. Default is 0. Enter a negative value to see zero length "
      "intervals");
 
  po::positional_options_description pos;
  pos.add("input-file", 1);
 
  po::options_description all;
  all.add(visible).add(hidden);
 
  po::variables_map vm;
  po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm);
  po::notify(vm);
 
  if (vm.count("help") || !vm.count("input-file")) {
    std::clog << std::endl;
    std::clog << "Compute the persistent homology with coefficient field Z/pZ \n";
    std::clog << "of an Alpha complex defined on a set of input points.\n \n";
    std::clog << "The output diagram contains one bar per line, written with the convention: \n";
    std::clog << "   p   dim b d \n";
    std::clog << "where dim is the dimension of the homological feature,\n";
    std::clog << "b and d are respectively the birth and death of the feature and \n";
    std::clog << "p is the characteristic of the field Z/pZ used for homology coefficients." << std::endl << std::endl;
 
    std::clog << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl;
    std::clog << visible << std::endl;
    exit(-1);
  }
}
OFF file reader implementation in order to read points from an OFF file.
Definition: Points_off_io.h:122
Options::Filtration_value Filtration_value
Type for the value of the filtration function.
Definition: Simplex_tree.h:88
size_t num_vertices() const
Returns the number of vertices in the complex.
Definition: Simplex_tree.h:574
int dimension(Simplex_handle sh)
Returns the dimension of a simplex.
Definition: Simplex_tree.h:602
size_t num_simplices()
returns the number of simplices in the simplex_tree.
Definition: Simplex_tree.h:580
Alpha complex data structure.
Definition: Alpha_complex.h:103
Computes the persistent cohomology of a filtered complex.
Definition: Persistent_cohomology.h:52
Value type for a filtration function on a cell complex.
Definition: FiltrationValue.h:20