All Classes Files Functions Variables Typedefs Enumerations Enumerator Friends Modules Pages
Simplex_tree.h
1/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
2 * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
3 * Author(s): Clément Maria
4 *
5 * Copyright (C) 2014 Inria
6 *
7 * Modification(s):
8 * - YYYY/MM Author: Description of the modification
9 */
10
11#ifndef SIMPLEX_TREE_H_
12#define SIMPLEX_TREE_H_
13
14#include <gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h>
15#include <gudhi/Simplex_tree/Simplex_tree_siblings.h>
16#include <gudhi/Simplex_tree/Simplex_tree_iterators.h>
17#include <gudhi/Simplex_tree/indexing_tag.h>
18
19#include <gudhi/reader_utils.h>
21#include <gudhi/Debug_utils.h>
22
23#include <boost/container/flat_map.hpp>
24#include <boost/iterator/transform_iterator.hpp>
25#include <boost/graph/adjacency_list.hpp>
26#include <boost/range/adaptor/reversed.hpp>
27#include <boost/container/static_vector.hpp>
28
29#ifdef GUDHI_USE_TBB
30#include <tbb/parallel_sort.h>
31#endif
32
33#include <utility>
34#include <vector>
35#include <functional> // for greater<>
36#include <stdexcept>
37#include <limits> // Inf
38#include <initializer_list>
39#include <algorithm> // for std::max
40#include <cstdint> // for std::uint32_t
41#include <iterator> // for std::distance
42
43namespace Gudhi {
44
61enum class Extended_simplex_type {UP, DOWN, EXTRA};
62
63struct Simplex_tree_options_full_featured;
64
78template<typename SimplexTreeOptions = Simplex_tree_options_full_featured>
80 public:
82 typedef typename Options::Indexing_tag Indexing_tag;
95
96 /* Type of node in the simplex tree. */
98 /* Type of dictionary Vertex_handle -> Node for traversing the simplex tree. */
99 // Note: this wastes space when Vertex_handle is 32 bits and Node is aligned on 64 bits. It would be better to use a
100 // flat_set (with our own comparator) where we can control the layout of the struct (put Vertex_handle and
101 // Simplex_key next to each other).
102 typedef typename boost::container::flat_map<Vertex_handle, Node> Dictionary;
103
106
107
108
109 struct Key_simplex_base_real {
110 Key_simplex_base_real() : key_(-1) {}
111 void assign_key(Simplex_key k) { key_ = k; }
112 Simplex_key key() const { return key_; }
113 private:
114 Simplex_key key_;
115 };
116 struct Key_simplex_base_dummy {
117 Key_simplex_base_dummy() {}
118 // Undefined so it will not link
120 Simplex_key key() const;
121 };
122 struct Extended_filtration_data {
123 Filtration_value minval;
124 Filtration_value maxval;
125 Extended_filtration_data(){}
126 Extended_filtration_data(Filtration_value vmin, Filtration_value vmax): minval(vmin), maxval(vmax) {}
127 };
128 typedef typename std::conditional<Options::store_key, Key_simplex_base_real, Key_simplex_base_dummy>::type
129 Key_simplex_base;
130
131 struct Filtration_simplex_base_real {
132 Filtration_simplex_base_real() : filt_(0) {}
133 void assign_filtration(Filtration_value f) { filt_ = f; }
134 Filtration_value filtration() const { return filt_; }
135 private:
136 Filtration_value filt_;
137 };
138 struct Filtration_simplex_base_dummy {
139 Filtration_simplex_base_dummy() {}
140 void assign_filtration(Filtration_value GUDHI_CHECK_code(f)) { GUDHI_CHECK(f == 0, "filtration value specified for a complex that does not store them"); }
141 Filtration_value filtration() const { return 0; }
142 };
143 typedef typename std::conditional<Options::store_filtration, Filtration_simplex_base_real,
144 Filtration_simplex_base_dummy>::type Filtration_simplex_base;
145
146 public:
152 typedef typename Dictionary::iterator Simplex_handle;
153
154 private:
155 typedef typename Dictionary::iterator Dictionary_it;
156 typedef typename Dictionary_it::value_type Dit_value_t;
157
158 struct return_first {
159 Vertex_handle operator()(const Dit_value_t& p_sh) const {
160 return p_sh.first;
161 }
162 };
163
164 public:
176 typedef boost::transform_iterator<return_first, Dictionary_it> Complex_vertex_iterator;
178 typedef boost::iterator_range<Complex_vertex_iterator> Complex_vertex_range;
184 typedef boost::iterator_range<Simplex_vertex_iterator> Simplex_vertex_range;
186 typedef std::vector<Simplex_handle> Cofaces_simplex_range;
192 typedef boost::iterator_range<Boundary_simplex_iterator> Boundary_simplex_range;
198 typedef boost::iterator_range<Boundary_opposite_vertex_simplex_iterator> Boundary_opposite_vertex_simplex_range;
204 typedef boost::iterator_range<Complex_simplex_iterator> Complex_simplex_range;
212 typedef boost::iterator_range<Skeleton_simplex_iterator> Skeleton_simplex_range;
214 typedef std::vector<Simplex_handle> Filtration_simplex_range;
218 typedef typename Filtration_simplex_range::const_iterator Filtration_simplex_iterator;
219
220 /* @} */ // end name range and iterator types
228 boost::make_transform_iterator(root_.members_.begin(), return_first()),
229 boost::make_transform_iterator(root_.members_.end(), return_first()));
230 }
231
240 }
241
254 }
255
273 return filtration_vect_;
274 }
275
283 GUDHI_CHECK(sh != null_simplex(), "empty simplex");
286 }
287
302 template<class SimplexHandle>
306 }
307
319 template<class SimplexHandle>
323 }
324 // end range and iterator methods
331 : null_vertex_(-1),
332 root_(nullptr, null_vertex_),
333 filtration_vect_(),
334 dimension_(-1) { }
335
337 Simplex_tree(const Simplex_tree& complex_source) {
338#ifdef DEBUG_TRACES
339 std::clog << "Simplex_tree copy constructor" << std::endl;
340#endif // DEBUG_TRACES
341 copy_from(complex_source);
342 }
343
347 Simplex_tree(Simplex_tree && complex_source) {
348#ifdef DEBUG_TRACES
349 std::clog << "Simplex_tree move constructor" << std::endl;
350#endif // DEBUG_TRACES
351 move_from(complex_source);
352
353 // just need to set dimension_ on source to make it available again
354 // (filtration_vect_ and members are already set from the move)
355 complex_source.dimension_ = -1;
356 }
357
360 root_members_recursive_deletion();
361 }
362
364 Simplex_tree& operator= (const Simplex_tree& complex_source) {
365#ifdef DEBUG_TRACES
366 std::clog << "Simplex_tree copy assignment" << std::endl;
367#endif // DEBUG_TRACES
368 // Self-assignment detection
369 if (&complex_source != this) {
370 // We start by deleting root_ if not empty
371 root_members_recursive_deletion();
372
373 copy_from(complex_source);
374 }
375 return *this;
376 }
377
382#ifdef DEBUG_TRACES
383 std::clog << "Simplex_tree move assignment" << std::endl;
384#endif // DEBUG_TRACES
385 // Self-assignment detection
386 if (&complex_source != this) {
387 // root_ deletion in case it was not empty
388 root_members_recursive_deletion();
389
390 move_from(complex_source);
391 }
392 return *this;
393 } // end constructor/destructor
395
396 private:
397 // Copy from complex_source to "this"
398 void copy_from(const Simplex_tree& complex_source) {
399 null_vertex_ = complex_source.null_vertex_;
400 filtration_vect_.clear();
401 dimension_ = complex_source.dimension_;
402 auto root_source = complex_source.root_;
403
404 // root members copy
405 root_.members() = Dictionary(boost::container::ordered_unique_range, root_source.members().begin(), root_source.members().end());
406 // Needs to reassign children
407 for (auto& map_el : root_.members()) {
408 map_el.second.assign_children(&root_);
409 }
410 rec_copy(&root_, &root_source);
411 }
412
414 void rec_copy(Siblings *sib, Siblings *sib_source) {
415 for (auto sh = sib->members().begin(), sh_source = sib_source->members().begin();
416 sh != sib->members().end(); ++sh, ++sh_source) {
417 if (has_children(sh_source)) {
418 Siblings * newsib = new Siblings(sib, sh_source->first);
419 newsib->members_.reserve(sh_source->second.children()->members().size());
420 for (auto & child : sh_source->second.children()->members())
421 newsib->members_.emplace_hint(newsib->members_.end(), child.first, Node(newsib, child.second.filtration()));
422 rec_copy(newsib, sh_source->second.children());
423 sh->second.assign_children(newsib);
424 }
425 }
426 }
427
428 // Move from complex_source to "this"
429 void move_from(Simplex_tree& complex_source) {
430 null_vertex_ = std::move(complex_source.null_vertex_);
431 root_ = std::move(complex_source.root_);
432 filtration_vect_ = std::move(complex_source.filtration_vect_);
433 dimension_ = std::move(complex_source.dimension_);
434
435 // Need to update root members (children->oncles and children need to point on the new root pointer)
436 for (auto& map_el : root_.members()) {
437 if (map_el.second.children() != &(complex_source.root_)) {
438 // reset children->oncles with the moved root_ pointer value
439 map_el.second.children()->oncles_ = &root_;
440 } else {
441 // if simplex is of dimension 0, oncles_ shall be nullptr
442 GUDHI_CHECK(map_el.second.children()->oncles_ == nullptr,
443 std::invalid_argument("Simplex_tree move constructor from an invalid Simplex_tree"));
444 // and children points on root_ - to be moved
445 map_el.second.assign_children(&root_);
446 }
447 }
448 }
449
450 // delete all root_.members() recursively
451 void root_members_recursive_deletion() {
452 for (auto sh = root_.members().begin(); sh != root_.members().end(); ++sh) {
453 if (has_children(sh)) {
454 rec_delete(sh->second.children());
455 }
456 }
457 root_.members().clear();
458 }
459
460 // Recursive deletion
461 void rec_delete(Siblings * sib) {
462 for (auto sh = sib->members().begin(); sh != sib->members().end(); ++sh) {
463 if (has_children(sh)) {
464 rec_delete(sh->second.children());
465 }
466 }
467 delete sib;
468 }
469
470 public:
473 if ((null_vertex_ != st2.null_vertex_) ||
474 (dimension_ != st2.dimension_))
475 return false;
476 return rec_equal(&root_, &st2.root_);
477 }
478
481 return (!(*this == st2));
482 }
483
484 private:
486 bool rec_equal(Siblings* s1, Siblings* s2) {
487 if (s1->members().size() != s2->members().size())
488 return false;
489 for (auto sh1 = s1->members().begin(), sh2 = s2->members().begin();
490 (sh1 != s1->members().end() && sh2 != s2->members().end()); ++sh1, ++sh2) {
491 if (sh1->first != sh2->first || sh1->second.filtration() != sh2->second.filtration())
492 return false;
493 if (has_children(sh1) != has_children(sh2))
494 return false;
495 // Recursivity on children only if both have children
496 else if (has_children(sh1))
497 if (!rec_equal(sh1->second.children(), sh2->second.children()))
498 return false;
499 }
500 return true;
501 }
502
507 static Filtration_value filtration_(Simplex_handle sh) {
508 GUDHI_CHECK (sh != null_simplex(), "null simplex");
509 return sh->second.filtration();
510 }
511
512 public:
519 return sh->second.key();
520 }
521
527 return filtration_vect_[idx];
528 }
529
536 if (sh != null_simplex()) {
537 return sh->second.filtration();
538 } else {
539 return std::numeric_limits<Filtration_value>::infinity();
540 }
541 }
542
547 GUDHI_CHECK(sh != null_simplex(),
548 std::invalid_argument("Simplex_tree::assign_filtration - cannot assign filtration on null_simplex"));
549 sh->second.assign_filtration(fv);
550 }
551
557 return Dictionary_it(nullptr);
558 }
559
562 return -1;
563 }
564
568 return null_vertex_;
569 }
570
572 size_t num_vertices() const {
573 return root_.members_.size();
574 }
575
576 public:
578 size_t num_simplices() {
579 return num_simplices(&root_);
580 }
581
582 private:
584 size_t num_simplices(Siblings * sib) {
585 auto sib_begin = sib->members().begin();
586 auto sib_end = sib->members().end();
587 size_t simplices_number = sib_end - sib_begin;
588 for (auto sh = sib_begin; sh != sib_end; ++sh) {
589 if (has_children(sh)) {
590 simplices_number += num_simplices(sh->second.children());
591 }
592 }
593 return simplices_number;
594 }
595
596 public:
601 Siblings * curr_sib = self_siblings(sh);
602 int dim = 0;
603 while (curr_sib != nullptr) {
604 ++dim;
605 curr_sib = curr_sib->oncles();
606 }
607 return dim - 1;
608 }
609
612 return dimension_;
613 }
614
619 int dimension() {
620 if (dimension_to_be_lowered_)
621 lower_upper_bound_dimension();
622 return dimension_;
623 }
624
627 template<class SimplexHandle>
628 bool has_children(SimplexHandle sh) const {
629 // Here we rely on the root using null_vertex(), which cannot match any real vertex.
630 return (sh->second.children()->parent() == sh->first);
631 }
632
640 template<class InputVertexRange = std::initializer_list<Vertex_handle>>
641 Simplex_handle find(const InputVertexRange & s) {
642 auto first = std::begin(s);
643 auto last = std::end(s);
644
645 if (first == last)
646 return null_simplex(); // ----->>
647
648 // Copy before sorting
649 std::vector<Vertex_handle> copy(first, last);
650 std::sort(std::begin(copy), std::end(copy));
651 return find_simplex(copy);
652 }
653
654 private:
656 Simplex_handle find_simplex(const std::vector<Vertex_handle> & simplex) {
657 Siblings * tmp_sib = &root_;
658 Dictionary_it tmp_dit;
659 auto vi = simplex.begin();
660 if (Options::contiguous_vertices) {
661 // Equivalent to the first iteration of the normal loop
662 GUDHI_CHECK(contiguous_vertices(), "non-contiguous vertices");
663 Vertex_handle v = *vi++;
664 if(v < 0 || v >= static_cast<Vertex_handle>(root_.members_.size()))
665 return null_simplex();
666 tmp_dit = root_.members_.begin() + v;
667 if (vi == simplex.end())
668 return tmp_dit;
669 if (!has_children(tmp_dit))
670 return null_simplex();
671 tmp_sib = tmp_dit->second.children();
672 }
673 for (;;) {
674 tmp_dit = tmp_sib->members_.find(*vi++);
675 if (tmp_dit == tmp_sib->members_.end())
676 return null_simplex();
677 if (vi == simplex.end())
678 return tmp_dit;
679 if (!has_children(tmp_dit))
680 return null_simplex();
681 tmp_sib = tmp_dit->second.children();
682 }
683 }
684
687 Simplex_handle find_vertex(Vertex_handle v) {
688 if (Options::contiguous_vertices) {
689 assert(contiguous_vertices());
690 return root_.members_.begin() + v;
691 } else {
692 return root_.members_.find(v);
693 }
694 }
695
696 public:
698 bool contiguous_vertices() const {
699 if (root_.members_.empty()) return true;
700 if (root_.members_.begin()->first != 0) return false;
701 if (std::prev(root_.members_.end())->first != static_cast<Vertex_handle>(root_.members_.size() - 1)) return false;
702 return true;
703 }
704
705 private:
720 std::pair<Simplex_handle, bool> insert_vertex_vector(const std::vector<Vertex_handle>& simplex,
722 Siblings * curr_sib = &root_;
723 std::pair<Simplex_handle, bool> res_insert;
724 auto vi = simplex.begin();
725 for (; vi != simplex.end() - 1; ++vi) {
726 GUDHI_CHECK(*vi != null_vertex(), "cannot use the dummy null_vertex() as a real vertex");
727 res_insert = curr_sib->members_.emplace(*vi, Node(curr_sib, filtration));
728 if (!(has_children(res_insert.first))) {
729 res_insert.first->second.assign_children(new Siblings(curr_sib, *vi));
730 }
731 curr_sib = res_insert.first->second.children();
732 }
733 GUDHI_CHECK(*vi != null_vertex(), "cannot use the dummy null_vertex() as a real vertex");
734 res_insert = curr_sib->members_.emplace(*vi, Node(curr_sib, filtration));
735 if (!res_insert.second) {
736 // if already in the complex
737 if (res_insert.first->second.filtration() > filtration) {
738 // if filtration value modified
739 res_insert.first->second.assign_filtration(filtration);
740 return res_insert;
741 }
742 // if filtration value unchanged
743 return std::pair<Simplex_handle, bool>(null_simplex(), false);
744 }
745 // otherwise the insertion has succeeded - size is a size_type
746 if (static_cast<int>(simplex.size()) - 1 > dimension_) {
747 // Update dimension if needed
748 dimension_ = static_cast<int>(simplex.size()) - 1;
749 }
750 return res_insert;
751 }
752
753 public:
777 template<class InputVertexRange = std::initializer_list<Vertex_handle>>
778 std::pair<Simplex_handle, bool> insert_simplex(const InputVertexRange & simplex,
780 auto first = std::begin(simplex);
781 auto last = std::end(simplex);
782
783 if (first == last)
784 return std::pair<Simplex_handle, bool>(null_simplex(), true); // ----->>
785
786 // Copy before sorting
787 std::vector<Vertex_handle> copy(first, last);
788 std::sort(std::begin(copy), std::end(copy));
789 return insert_vertex_vector(copy, filtration);
790 }
791
806 template<class InputVertexRange = std::initializer_list<Vertex_handle>>
807 std::pair<Simplex_handle, bool> insert_simplex_and_subfaces(const InputVertexRange& Nsimplex,
809 auto first = std::begin(Nsimplex);
810 auto last = std::end(Nsimplex);
811
812 if (first == last)
813 return { null_simplex(), true }; // FIXME: false would make more sense to me.
814
815 thread_local std::vector<Vertex_handle> copy;
816 copy.clear();
817 copy.insert(copy.end(), first, last);
818 std::sort(copy.begin(), copy.end());
819 auto last_unique = std::unique(copy.begin(), copy.end());
820 copy.erase(last_unique, copy.end());
821 GUDHI_CHECK_code(
822 for (Vertex_handle v : copy)
823 GUDHI_CHECK(v != null_vertex(), "cannot use the dummy null_vertex() as a real vertex");
824 )
825 // Update dimension if needed. We could wait to see if the insertion succeeds, but I doubt there is much to gain.
826 dimension_ = (std::max)(dimension_, static_cast<int>(std::distance(copy.begin(), copy.end())) - 1);
827
828 return rec_insert_simplex_and_subfaces_sorted(root(), copy.begin(), copy.end(), filtration);
829 }
830
831 private:
832 // To insert {1,2,3,4}, we insert {2,3,4} twice, once at the root, and once below 1.
833 template<class ForwardVertexIterator>
834 std::pair<Simplex_handle, bool> rec_insert_simplex_and_subfaces_sorted(Siblings* sib,
835 ForwardVertexIterator first,
836 ForwardVertexIterator last,
837 Filtration_value filt) {
838 // An alternative strategy would be:
839 // - try to find the complete simplex, if found (and low filtration) exit
840 // - insert all the vertices at once in sib
841 // - loop over those (new or not) simplices, with a recursive call(++first, last)
842 Vertex_handle vertex_one = *first;
843 auto&& dict = sib->members();
844 auto insertion_result = dict.emplace(vertex_one, Node(sib, filt));
845 Simplex_handle simplex_one = insertion_result.first;
846 bool one_is_new = insertion_result.second;
847 if (!one_is_new) {
848 if (filtration(simplex_one) > filt) {
849 assign_filtration(simplex_one, filt);
850 } else {
851 // FIXME: this interface makes no sense, and it doesn't seem to be tested.
852 insertion_result.first = null_simplex();
853 }
854 }
855 if (++first == last) return insertion_result;
856 if (!has_children(simplex_one))
857 // TODO: have special code here, we know we are building the whole subtree from scratch.
858 simplex_one->second.assign_children(new Siblings(sib, vertex_one));
859 auto res = rec_insert_simplex_and_subfaces_sorted(simplex_one->second.children(), first, last, filt);
860 // No need to continue if the full simplex was already there with a low enough filtration value.
861 if (res.first != null_simplex()) rec_insert_simplex_and_subfaces_sorted(sib, first, last, filt);
862 return res;
863 }
864
865 public:
869 sh->second.assign_key(key);
870 }
871
875 std::pair<Simplex_handle, Simplex_handle> endpoints(Simplex_handle sh) {
876 assert(dimension(sh) == 1);
877 return { find_vertex(sh->first), find_vertex(self_siblings(sh)->parent()) };
878 }
879
881 template<class SimplexHandle>
882 static Siblings* self_siblings(SimplexHandle sh) {
883 if (sh->second.children()->parent() == sh->first)
884 return sh->second.children()->oncles();
885 else
886 return sh->second.children();
887 }
888
889 public:
892 return &root_;
893 }
894
900 dimension_to_be_lowered_ = false;
901 dimension_ = dimension;
902 }
903
904 public:
913 filtration_vect_.clear();
914 filtration_vect_.reserve(num_simplices());
916 filtration_vect_.push_back(sh);
917
918 /* We use stable_sort here because with libstdc++ it is faster than sort.
919 * is_before_in_filtration is now a total order, but we used to call
920 * stable_sort for the following heuristic:
921 * The use of a depth-first traversal of the simplex tree, provided by
922 * complex_simplex_range(), combined with a stable sort is meant to
923 * optimize the order of simplices with same filtration value. The
924 * heuristic consists in inserting the cofaces of a simplex as soon as
925 * possible.
926 */
927#ifdef GUDHI_USE_TBB
928 tbb::parallel_sort(filtration_vect_.begin(), filtration_vect_.end(), is_before_in_filtration(this));
929#else
930 std::stable_sort(filtration_vect_.begin(), filtration_vect_.end(), is_before_in_filtration(this));
931#endif
932 }
937 if (filtration_vect_.empty()) {
939 }
940 }
946 filtration_vect_.clear();
947 }
948
949 private:
962 void rec_coface(std::vector<Vertex_handle> &vertices, Siblings *curr_sib, int curr_nbVertices,
963 std::vector<Simplex_handle>& cofaces, bool star, int nbVertices) {
964 if (!(star || curr_nbVertices <= nbVertices)) // dimension of actual simplex <= nbVertices
965 return;
966 for (Simplex_handle simplex = curr_sib->members().begin(); simplex != curr_sib->members().end(); ++simplex) {
967 if (vertices.empty()) {
968 // If we reached the end of the vertices, and the simplex has more vertices than the given simplex
969 // => we found a coface
970
971 // Add a coface if we want the star or if the number of vertices of the current simplex matches with nbVertices
972 bool addCoface = (star || curr_nbVertices == nbVertices);
973 if (addCoface)
974 cofaces.push_back(simplex);
975 if ((!addCoface || star) && has_children(simplex)) // Rec call
976 rec_coface(vertices, simplex->second.children(), curr_nbVertices + 1, cofaces, star, nbVertices);
977 } else {
978 if (simplex->first == vertices.back()) {
979 // If curr_sib matches with the top vertex
980 bool equalDim = (star || curr_nbVertices == nbVertices); // dimension of actual simplex == nbVertices
981 bool addCoface = vertices.size() == 1 && equalDim;
982 if (addCoface)
983 cofaces.push_back(simplex);
984 if ((!addCoface || star) && has_children(simplex)) {
985 // Rec call
986 Vertex_handle tmp = vertices.back();
987 vertices.pop_back();
988 rec_coface(vertices, simplex->second.children(), curr_nbVertices + 1, cofaces, star, nbVertices);
989 vertices.push_back(tmp);
990 }
991 } else if (simplex->first > vertices.back()) {
992 return;
993 } else {
994 // (simplex->first < vertices.back()
996 rec_coface(vertices, simplex->second.children(), curr_nbVertices + 1, cofaces, star, nbVertices);
997 }
998 }
999 }
1000 }
1001
1002 public:
1009 return cofaces_simplex_range(simplex, 0);
1010 }
1011
1020 Cofaces_simplex_range cofaces;
1021 // codimension must be positive or null integer
1022 assert(codimension >= 0);
1024 std::vector<Vertex_handle> copy(rg.begin(), rg.end());
1025 if (codimension + static_cast<int>(copy.size()) > dimension_ + 1 ||
1026 (codimension == 0 && static_cast<int>(copy.size()) > dimension_)) // n+codimension greater than dimension_
1027 return cofaces;
1028 // must be sorted in decreasing order
1029 assert(std::is_sorted(copy.begin(), copy.end(), std::greater<Vertex_handle>()));
1030 bool star = codimension == 0;
1031 rec_coface(copy, &root_, 1, cofaces, star, codimension + static_cast<int>(copy.size()));
1032 return cofaces;
1033 }
1034
1035 private:
1043 bool reverse_lexicographic_order(Simplex_handle sh1, Simplex_handle sh2) {
1046 Simplex_vertex_iterator it1 = rg1.begin();
1047 Simplex_vertex_iterator it2 = rg2.begin();
1048 while (it1 != rg1.end() && it2 != rg2.end()) {
1049 if (*it1 == *it2) {
1050 ++it1;
1051 ++it2;
1052 } else {
1053 return *it1 < *it2;
1054 }
1055 }
1056 return ((it1 == rg1.end()) && (it2 != rg2.end()));
1057 }
1058
1065 struct is_before_in_filtration {
1066 explicit is_before_in_filtration(Simplex_tree * st)
1067 : st_(st) { }
1068
1069 bool operator()(const Simplex_handle sh1, const Simplex_handle sh2) const {
1070 // Not using st_->filtration(sh1) because it uselessly tests for null_simplex.
1071 if (sh1->second.filtration() != sh2->second.filtration()) {
1072 return sh1->second.filtration() < sh2->second.filtration();
1073 }
1074 // is sh1 a proper subface of sh2
1075 return st_->reverse_lexicographic_order(sh1, sh2);
1076 }
1077
1078 Simplex_tree * st_;
1079 };
1080
1081 public:
1105 template<class OneSkeletonGraph>
1106 void insert_graph(const OneSkeletonGraph& skel_graph) {
1107 // the simplex tree must be empty
1108 assert(num_simplices() == 0);
1109
1110 // is there a better way to let the compiler know that we don't mean Simplex_tree::num_vertices?
1111 using boost::num_vertices;
1112
1113 if (num_vertices(skel_graph) == 0) {
1114 return;
1115 }
1116 if (num_edges(skel_graph) == 0) {
1117 dimension_ = 0;
1118 } else {
1119 dimension_ = 1;
1120 }
1121
1122 root_.members_.reserve(num_vertices(skel_graph));
1123
1124 typename boost::graph_traits<OneSkeletonGraph>::vertex_iterator v_it,
1125 v_it_end;
1126 for (std::tie(v_it, v_it_end) = vertices(skel_graph); v_it != v_it_end;
1127 ++v_it) {
1128 root_.members_.emplace_hint(
1129 root_.members_.end(), *v_it,
1130 Node(&root_, get(vertex_filtration_t(), skel_graph, *v_it)));
1131 }
1132 std::pair<typename boost::graph_traits<OneSkeletonGraph>::edge_iterator,
1133 typename boost::graph_traits<OneSkeletonGraph>::edge_iterator> boost_edges = edges(skel_graph);
1134 // boost_edges.first is the equivalent to boost_edges.begin()
1135 // boost_edges.second is the equivalent to boost_edges.end()
1136 for (; boost_edges.first != boost_edges.second; boost_edges.first++) {
1137 auto edge = *(boost_edges.first);
1138 auto u = source(edge, skel_graph);
1139 auto v = target(edge, skel_graph);
1140 if (u == v) throw "Self-loops are not simplicial";
1141 // We cannot skip edges with the wrong orientation and expect them to
1142 // come a second time with the right orientation, that does not always
1143 // happen in practice. emplace() should be a NOP when an element with the
1144 // same key is already there, so seeing the same edge multiple times is
1145 // ok.
1146 // Should we actually forbid multiple edges? That would be consistent
1147 // with rejecting self-loops.
1148 if (v < u) std::swap(u, v);
1149 auto sh = find_vertex(u);
1150 if (!has_children(sh)) {
1151 sh->second.assign_children(new Siblings(&root_, sh->first));
1152 }
1153
1154 sh->second.children()->members().emplace(v,
1155 Node(sh->second.children(), get(edge_filtration_t(), skel_graph, edge)));
1156 }
1157 }
1158
1170 void expansion(int max_dim) {
1171 if (max_dim <= 1) return;
1172 clear_filtration(); // Drop the cache.
1173 dimension_ = max_dim;
1174 for (Dictionary_it root_it = root_.members_.begin();
1175 root_it != root_.members_.end(); ++root_it) {
1176 if (has_children(root_it)) {
1177 siblings_expansion(root_it->second.children(), max_dim - 1);
1178 }
1179 }
1180 dimension_ = max_dim - dimension_;
1181 }
1182
1183 private:
1185 void siblings_expansion(Siblings * siblings, // must contain elements
1186 int k) {
1187 if (dimension_ > k) {
1188 dimension_ = k;
1189 }
1190 if (k == 0)
1191 return;
1192 Dictionary_it next = siblings->members().begin();
1193 ++next;
1194
1195 thread_local std::vector<std::pair<Vertex_handle, Node> > inter;
1196 for (Dictionary_it s_h = siblings->members().begin();
1197 s_h != siblings->members().end(); ++s_h, ++next) {
1198 Simplex_handle root_sh = find_vertex(s_h->first);
1199 if (has_children(root_sh)) {
1200 intersection(
1201 inter, // output intersection
1202 next, // begin
1203 siblings->members().end(), // end
1204 root_sh->second.children()->members().begin(),
1205 root_sh->second.children()->members().end(),
1206 s_h->second.filtration());
1207 if (inter.size() != 0) {
1208 Siblings * new_sib = new Siblings(siblings, // oncles
1209 s_h->first, // parent
1210 inter); // boost::container::ordered_unique_range_t
1211 inter.clear();
1212 s_h->second.assign_children(new_sib);
1213 siblings_expansion(new_sib, k - 1);
1214 } else {
1215 // ensure the children property
1216 s_h->second.assign_children(siblings);
1217 inter.clear();
1218 }
1219 }
1220 }
1221 }
1222
1225 static void intersection(std::vector<std::pair<Vertex_handle, Node> >& intersection,
1226 Dictionary_it begin1, Dictionary_it end1,
1227 Dictionary_it begin2, Dictionary_it end2,
1228 Filtration_value filtration_) {
1229 if (begin1 == end1 || begin2 == end2)
1230 return; // ----->>
1231 while (true) {
1232 if (begin1->first == begin2->first) {
1233 Filtration_value filt = (std::max)({begin1->second.filtration(), begin2->second.filtration(), filtration_});
1234 intersection.emplace_back(begin1->first, Node(nullptr, filt));
1235 if (++begin1 == end1 || ++begin2 == end2)
1236 return; // ----->>
1237 } else if (begin1->first < begin2->first) {
1238 if (++begin1 == end1)
1239 return;
1240 } else /* begin1->first > begin2->first */ {
1241 if (++begin2 == end2)
1242 return; // ----->>
1243 }
1244 }
1245 }
1246
1247 public:
1266 template< typename Blocker >
1267 void expansion_with_blockers(int max_dim, Blocker block_simplex) {
1268 // Loop must be from the end to the beginning, as higher dimension simplex are always on the left part of the tree
1269 for (auto& simplex : boost::adaptors::reverse(root_.members())) {
1270 if (has_children(&simplex)) {
1271 siblings_expansion_with_blockers(simplex.second.children(), max_dim, max_dim - 1, block_simplex);
1272 }
1273 }
1274 }
1275
1276 private:
1278 template< typename Blocker >
1279 void siblings_expansion_with_blockers(Siblings* siblings, int max_dim, int k, Blocker block_simplex) {
1280 if (dimension_ < max_dim - k) {
1281 dimension_ = max_dim - k;
1282 }
1283 if (k == 0)
1284 return;
1285 // No need to go deeper
1286 if (siblings->members().size() < 2)
1287 return;
1288 // Reverse loop starting before the last one for 'next' to be the last one
1289 for (auto simplex = siblings->members().rbegin() + 1; simplex != siblings->members().rend(); simplex++) {
1290 std::vector<std::pair<Vertex_handle, Node> > intersection;
1291 for(auto next = siblings->members().rbegin(); next != simplex; next++) {
1292 bool to_be_inserted = true;
1293 Filtration_value filt = simplex->second.filtration();
1294 // If all the boundaries are present, 'next' needs to be inserted
1295 for (Simplex_handle border : boundary_simplex_range(simplex)) {
1296 Simplex_handle border_child = find_child(border, next->first);
1297 if (border_child == null_simplex()) {
1298 to_be_inserted=false;
1299 break;
1300 }
1301 filt = (std::max)(filt, filtration(border_child));
1302 }
1303 if (to_be_inserted) {
1304 intersection.emplace_back(next->first, Node(nullptr, filt));
1305 }
1306 }
1307 if (intersection.size() != 0) {
1308 // Reverse the order to insert
1309 Siblings * new_sib = new Siblings(siblings, // oncles
1310 simplex->first, // parent
1311 boost::adaptors::reverse(intersection)); // boost::container::ordered_unique_range_t
1312 simplex->second.assign_children(new_sib);
1313 std::vector<Vertex_handle> blocked_new_sib_vertex_list;
1314 // As all intersections are inserted, we can call the blocker function on all new_sib members
1315 for (auto new_sib_member = new_sib->members().begin();
1316 new_sib_member != new_sib->members().end();
1317 new_sib_member++) {
1318 bool blocker_result = block_simplex(new_sib_member);
1319 // new_sib member has been blocked by the blocker function
1320 // add it to the list to be removed - do not perform it while looping on it
1321 if (blocker_result) {
1322 blocked_new_sib_vertex_list.push_back(new_sib_member->first);
1323 }
1324 }
1325 if (blocked_new_sib_vertex_list.size() == new_sib->members().size()) {
1326 // Specific case where all have to be deleted
1327 delete new_sib;
1328 // ensure the children property
1329 simplex->second.assign_children(siblings);
1330 } else {
1331 for (auto& blocked_new_sib_member : blocked_new_sib_vertex_list) {
1332 new_sib->members().erase(blocked_new_sib_member);
1333 }
1334 // ensure recursive call
1335 siblings_expansion_with_blockers(new_sib, max_dim, k - 1, block_simplex);
1336 }
1337 } else {
1338 // ensure the children property
1339 simplex->second.assign_children(siblings);
1340 }
1341 }
1342 }
1343
1348 Simplex_handle find_child(Simplex_handle sh, Vertex_handle vh) const {
1349 if (!has_children(sh))
1350 return null_simplex();
1351
1352 Simplex_handle child = sh->second.children()->find(vh);
1353 // Specific case of boost::flat_map does not find, returns boost::flat_map::end()
1354 // in simplex tree we want a null_simplex()
1355 if (child == sh->second.children()->members().end())
1356 return null_simplex();
1357
1358 return child;
1359 }
1360
1361 public:
1368 void print_hasse(std::ostream& os) {
1369 os << num_simplices() << " " << std::endl;
1370 for (auto sh : filtration_simplex_range()) {
1371 os << dimension(sh) << " ";
1372 for (auto b_sh : boundary_simplex_range(sh)) {
1373 os << key(b_sh) << " ";
1374 }
1375 os << filtration(sh) << " \n";
1376 }
1377 }
1378
1379 public:
1387 bool modified = false;
1388 // Loop must be from the end to the beginning, as higher dimension simplex are always on the left part of the tree
1389 for (auto& simplex : boost::adaptors::reverse(root_.members())) {
1390 if (has_children(&simplex)) {
1391 modified |= rec_make_filtration_non_decreasing(simplex.second.children());
1392 }
1393 }
1394 if(modified)
1395 clear_filtration(); // Drop the cache.
1396 return modified;
1397 }
1398
1399 private:
1404 bool rec_make_filtration_non_decreasing(Siblings * sib) {
1405 bool modified = false;
1406
1407 // Loop must be from the end to the beginning, as higher dimension simplex are always on the left part of the tree
1408 for (auto& simplex : boost::adaptors::reverse(sib->members())) {
1409 // Find the maximum filtration value in the border
1411 Boundary_simplex_iterator max_border = std::max_element(std::begin(boundary), std::end(boundary),
1412 [](Simplex_handle sh1, Simplex_handle sh2) {
1413 return filtration(sh1) < filtration(sh2);
1414 });
1415
1416 Filtration_value max_filt_border_value = filtration(*max_border);
1417 // Replacing if(f<max) with if(!(f>=max)) would mean that if f is NaN, we replace it with the max of the children.
1418 // That seems more useful than keeping NaN.
1419 if (!(simplex.second.filtration() >= max_filt_border_value)) {
1420 // Store the filtration modification information
1421 modified = true;
1422 simplex.second.assign_filtration(max_filt_border_value);
1423 }
1424 if (has_children(&simplex)) {
1425 modified |= rec_make_filtration_non_decreasing(simplex.second.children());
1426 }
1427 }
1428 // Make the modified information to be traced by upper call
1429 return modified;
1430 }
1431
1432 public:
1441 bool modified = rec_prune_above_filtration(root(), filtration);
1442 if(modified)
1443 clear_filtration(); // Drop the cache.
1444 return modified;
1445 }
1446
1447 private:
1448 bool rec_prune_above_filtration(Siblings* sib, Filtration_value filt) {
1449 auto&& list = sib->members();
1450 auto last = std::remove_if(list.begin(), list.end(), [this,filt](Dit_value_t& simplex) {
1451 if (simplex.second.filtration() <= filt) return false;
1452 if (has_children(&simplex)) rec_delete(simplex.second.children());
1453 // dimension may need to be lowered
1454 dimension_to_be_lowered_ = true;
1455 return true;
1456 });
1457
1458 bool modified = (last != list.end());
1459 if (last == list.begin() && sib != root()) {
1460 // Removing the whole siblings, parent becomes a leaf.
1461 sib->oncles()->members()[sib->parent()].assign_children(sib->oncles());
1462 delete sib;
1463 // dimension may need to be lowered
1464 dimension_to_be_lowered_ = true;
1465 return true;
1466 } else {
1467 // Keeping some elements of siblings. Remove the others, and recurse in the remaining ones.
1468 list.erase(last, list.end());
1469 for (auto&& simplex : list)
1470 if (has_children(&simplex))
1471 modified |= rec_prune_above_filtration(simplex.second.children(), filt);
1472 }
1473 return modified;
1474 }
1475
1476 private:
1482 bool lower_upper_bound_dimension() {
1483 // reset automatic detection to recompute
1484 dimension_to_be_lowered_ = false;
1485 int new_dimension = -1;
1486 // Browse the tree from the left to the right as higher dimension cells are more likely on the left part of the tree
1487 for (Simplex_handle sh : complex_simplex_range()) {
1488#ifdef DEBUG_TRACES
1489 for (auto vertex : simplex_vertex_range(sh)) {
1490 std::clog << " " << vertex;
1491 }
1492 std::clog << std::endl;
1493#endif // DEBUG_TRACES
1494
1495 int sh_dimension = dimension(sh);
1496 if (sh_dimension >= dimension_)
1497 // Stop browsing as soon as the dimension is reached, no need to go further
1498 return false;
1499 new_dimension = (std::max)(new_dimension, sh_dimension);
1500 }
1501 dimension_ = new_dimension;
1502 return true;
1503 }
1504
1505
1506 public:
1516 // Guarantee the simplex has no children
1517 GUDHI_CHECK(!has_children(sh),
1518 std::invalid_argument("Simplex_tree::remove_maximal_simplex - argument has children"));
1519
1520 // Simplex is a leaf, it means the child is the Siblings owning the leaf
1521 Siblings* child = sh->second.children();
1522
1523 if ((child->size() > 1) || (child == root())) {
1524 // Not alone, just remove it from members
1525 // Special case when child is the root of the simplex tree, just remove it from members
1526 child->erase(sh);
1527 } else {
1528 // Sibling is emptied : must be deleted, and its parent must point on his own Sibling
1529 child->oncles()->members().at(child->parent()).assign_children(child->oncles());
1530 delete child;
1531 // dimension may need to be lowered
1532 dimension_to_be_lowered_ = true;
1533 }
1534 }
1535
1552 std::pair<Filtration_value, Extended_simplex_type> decode_extended_filtration(Filtration_value f, const Extended_filtration_data& efd){
1553 std::pair<Filtration_value, Extended_simplex_type> p;
1554 Filtration_value minval = efd.minval;
1555 Filtration_value maxval = efd.maxval;
1556 if (f >= -2 && f <= -1){
1557 p.first = minval + (maxval-minval)*(f + 2); p.second = Extended_simplex_type::UP;
1558 }
1559 else if (f >= 1 && f <= 2){
1560 p.first = minval - (maxval-minval)*(f - 2); p.second = Extended_simplex_type::DOWN;
1561 }
1562 else{
1563 p.first = std::numeric_limits<Filtration_value>::quiet_NaN(); p.second = Extended_simplex_type::EXTRA;
1564 }
1565 return p;
1566 };
1567
1581 Extended_filtration_data extend_filtration() {
1582 clear_filtration(); // Drop the cache.
1583
1584 // Compute maximum and minimum of filtration values
1585 Vertex_handle maxvert = std::numeric_limits<Vertex_handle>::min();
1586 Filtration_value minval = std::numeric_limits<Filtration_value>::infinity();
1587 Filtration_value maxval = -std::numeric_limits<Filtration_value>::infinity();
1588 for (auto sh = root_.members().begin(); sh != root_.members().end(); ++sh){
1589 Filtration_value f = this->filtration(sh);
1590 minval = std::min(minval, f);
1591 maxval = std::max(maxval, f);
1592 maxvert = std::max(sh->first, maxvert);
1593 }
1594
1595 GUDHI_CHECK(maxvert < std::numeric_limits<Vertex_handle>::max(), std::invalid_argument("Simplex_tree contains a vertex with the largest Vertex_handle"));
1596 maxvert += 1;
1597
1598 Simplex_tree st_copy = *this;
1599
1600 // Add point for coning the simplicial complex
1601 this->insert_simplex({maxvert}, -3);
1602
1603 // For each simplex
1604 std::vector<Vertex_handle> vr;
1605 for (auto sh_copy : st_copy.complex_simplex_range()){
1606
1607 // Locate simplex
1608 vr.clear();
1609 for (auto vh : st_copy.simplex_vertex_range(sh_copy)){
1610 vr.push_back(vh);
1611 }
1612 auto sh = this->find(vr);
1613
1614 // Create cone on simplex
1615 vr.push_back(maxvert);
1616 if (this->dimension(sh) == 0){
1617 Filtration_value v = this->filtration(sh);
1618 Filtration_value scaled_v = (v-minval)/(maxval-minval);
1619 // Assign ascending value between -2 and -1 to vertex
1620 this->assign_filtration(sh, -2 + scaled_v);
1621 // Assign descending value between 1 and 2 to cone on vertex
1622 this->insert_simplex(vr, 2 - scaled_v);
1623 }
1624 else{
1625 // Assign value -3 to simplex and cone on simplex
1626 this->assign_filtration(sh, -3);
1627 this->insert_simplex(vr, -3);
1628 }
1629 }
1630
1631 // Automatically assign good values for simplices
1633
1634 // Return the filtration data
1635 Extended_filtration_data efd(minval, maxval);
1636 return efd;
1637 }
1638
1644 auto filt = filtration_(sh);
1645 for(auto v : simplex_vertex_range(sh))
1646 if(filtration_(find_vertex(v)) == filt)
1647 return v;
1648 return null_vertex();
1649 }
1650
1658 // See issue #251 for potential speed improvements.
1659 auto&& vertices = simplex_vertex_range(sh); // vertices in decreasing order
1660 auto end = std::end(vertices);
1661 auto vi = std::begin(vertices);
1662 GUDHI_CHECK(vi != end, "empty simplex");
1663 auto v0 = *vi;
1664 ++vi;
1665 GUDHI_CHECK(vi != end, "simplex of dimension 0");
1666 if(std::next(vi) == end) return sh; // shortcut for dimension 1
1667 boost::container::static_vector<Vertex_handle, 40> suffix;
1668 suffix.push_back(v0);
1669 auto filt = filtration_(sh);
1670 do
1671 {
1672 Vertex_handle v = *vi;
1673 auto&& children1 = find_vertex(v)->second.children()->members_;
1674 for(auto w : suffix){
1675 // Can we take advantage of the fact that suffix is ordered?
1676 Simplex_handle s = children1.find(w);
1677 if(filtration_(s) == filt)
1678 return s;
1679 }
1680 suffix.push_back(v);
1681 }
1682 while(++vi != end);
1683 return null_simplex();
1684 }
1685
1691 auto filt = filtration_(sh);
1692 // Naive implementation, it can be sped up.
1693 for(auto b : boundary_simplex_range(sh))
1694 if(filtration_(b) == filt)
1696 return sh; // None of its faces has the same filtration.
1697 }
1698
1699 public:
1708 void reset_filtration(Filtration_value filt_value, int min_dim = 0) {
1709 rec_reset_filtration(&root_, filt_value, min_dim);
1710 clear_filtration(); // Drop the cache.
1711 }
1712
1713 private:
1719 void rec_reset_filtration(Siblings * sib, Filtration_value filt_value, int min_depth) {
1720 for (auto sh = sib->members().begin(); sh != sib->members().end(); ++sh) {
1721 if (min_depth <= 0) {
1722 sh->second.assign_filtration(filt_value);
1723 }
1724 if (has_children(sh)) {
1725 rec_reset_filtration(sh->second.children(), filt_value, min_depth - 1);
1726 }
1727 }
1728 }
1729
1730 private:
1731 Vertex_handle null_vertex_;
1734 Siblings root_;
1736 std::vector<Simplex_handle> filtration_vect_;
1738 int dimension_;
1739 bool dimension_to_be_lowered_ = false;
1740};
1741
1742// Print a Simplex_tree in os.
1743template<typename...T>
1744std::ostream& operator<<(std::ostream & os, Simplex_tree<T...> & st) {
1745 for (auto sh : st.filtration_simplex_range()) {
1746 os << st.dimension(sh) << " ";
1747 for (auto v : st.simplex_vertex_range(sh)) {
1748 os << v << " ";
1749 }
1750 os << st.filtration(sh) << "\n"; // TODO(VR): why adding the key ?? not read ?? << " " << st.key(sh) << " \n";
1751 }
1752 return os;
1753}
1754
1755template<typename...T>
1756std::istream& operator>>(std::istream & is, Simplex_tree<T...> & st) {
1757 typedef Simplex_tree<T...> ST;
1758 std::vector<typename ST::Vertex_handle> simplex;
1759 typename ST::Filtration_value fil;
1760 int max_dim = -1;
1761 while (read_simplex(is, simplex, fil)) {
1762 // read all simplices in the file as a list of vertices
1763 // Warning : simplex_size needs to be casted in int - Can be 0
1764 int dim = static_cast<int> (simplex.size() - 1);
1765 if (max_dim < dim) {
1766 max_dim = dim;
1767 }
1768 // insert every simplex in the simplex tree
1769 st.insert_simplex(simplex, fil);
1770 simplex.clear();
1771 }
1772 st.set_dimension(max_dim);
1773
1774 return is;
1775}
1776
1783 typedef int Vertex_handle;
1784 typedef double Filtration_value;
1785 typedef std::uint32_t Simplex_key;
1786 static const bool store_key = true;
1787 static const bool store_filtration = true;
1788 static const bool contiguous_vertices = false;
1789};
1790
1799 typedef int Vertex_handle;
1800 typedef float Filtration_value;
1801 typedef std::uint32_t Simplex_key;
1802 static const bool store_key = true;
1803 static const bool store_filtration = true;
1804 static const bool contiguous_vertices = true;
1805};
1806 // end addtogroup simplex_tree
1808
1809} // namespace Gudhi
1810
1811#endif // SIMPLEX_TREE_H_
Extended simplex type data structure for representing the type of simplices in an extended filtration...
Iterator over the simplices of the boundary of a simplex and their opposite vertices.
Definition: Simplex_tree_iterators.h:190
Iterator over the simplices of the boundary of a simplex.
Definition: Simplex_tree_iterators.h:83
Iterator over the simplices of a simplicial complex.
Definition: Simplex_tree_iterators.h:300
Iterator over the vertices of a simplex in a SimplexTree.
Definition: Simplex_tree_iterators.h:38
Iterator over the simplices of the skeleton of a given dimension of the simplicial complex.
Definition: Simplex_tree_iterators.h:374
Simplex Tree data structure for representing simplicial complexes.
Definition: Simplex_tree.h:79
static Siblings * self_siblings(SimplexHandle sh)
Definition: Simplex_tree.h:882
Simplex_tree(Simplex_tree &&complex_source)
User-defined move constructor relocates the whole tree structure.
Definition: Simplex_tree.h:347
bool operator==(Simplex_tree &st2)
Checks if two simplex trees are equal.
Definition: Simplex_tree.h:472
Options::Filtration_value Filtration_value
Type for the value of the filtration function.
Definition: Simplex_tree.h:86
Cofaces_simplex_range cofaces_simplex_range(const Simplex_handle simplex, int codimension)
Compute the cofaces of a n simplex.
Definition: Simplex_tree.h:1019
Simplex_tree_boundary_opposite_vertex_simplex_iterator< Simplex_tree > Boundary_opposite_vertex_simplex_iterator
Iterator over the simplices of the boundary of a simplex and their opposite vertices.
Definition: Simplex_tree.h:196
void reset_filtration(Filtration_value filt_value, int min_dim=0)
This function resets the filtration value of all the simplices of dimension at least min_dim....
Definition: Simplex_tree.h:1708
void assign_filtration(Simplex_handle sh, Filtration_value fv)
Sets the filtration value of a simplex.
Definition: Simplex_tree.h:546
bool make_filtration_non_decreasing()
This function ensures that each simplex has a higher filtration value than its faces by increasing th...
Definition: Simplex_tree.h:1386
Dictionary::iterator Simplex_handle
Handle type to a simplex contained in the simplicial complex represented by the simplex tree.
Definition: Simplex_tree.h:152
Vertex_handle vertex_with_same_filtration(Simplex_handle sh)
Returns a vertex of sh that has the same filtration value as sh if it exists, and null_vertex() other...
Definition: Simplex_tree.h:1643
Filtration_simplex_range const & filtration_simplex_range(Indexing_tag=Indexing_tag())
Returns a range over the simplices of the simplicial complex, in the order of the filtration.
Definition: Simplex_tree.h:271
std::pair< Simplex_handle, bool > insert_simplex(const InputVertexRange &simplex, Filtration_value filtration=0)
Insert a simplex, represented by a range of Vertex_handles, in the simplicial complex.
Definition: Simplex_tree.h:778
Vertex_handle null_vertex() const
Returns a Vertex_handle different from all Vertex_handles associated to the vertices of the simplicia...
Definition: Simplex_tree.h:567
boost::iterator_range< Boundary_simplex_iterator > Boundary_simplex_range
Range over the simplices of the boundary of a simplex.
Definition: Simplex_tree.h:192
Simplex_vertex_range simplex_vertex_range(Simplex_handle sh) const
Returns a range over the vertices of a simplex.
Definition: Simplex_tree.h:282
void clear_filtration()
Clears the filtration cache produced by initialize_filtration().
Definition: Simplex_tree.h:945
Simplex_tree_simplex_vertex_iterator< Simplex_tree > Simplex_vertex_iterator
Iterator over the vertices of a simplex.
Definition: Simplex_tree.h:182
static Simplex_key key(Simplex_handle sh)
Returns the key associated to a simplex.
Definition: Simplex_tree.h:518
static Filtration_value filtration(Simplex_handle sh)
Returns the filtration value of a simplex.
Definition: Simplex_tree.h:535
bool operator!=(Simplex_tree &st2)
Checks if two simplex trees are different.
Definition: Simplex_tree.h:480
bool has_children(SimplexHandle sh) const
Returns true if the node in the simplex tree pointed by sh has children.
Definition: Simplex_tree.h:628
Cofaces_simplex_range star_simplex_range(const Simplex_handle simplex)
Compute the star of a n simplex.
Definition: Simplex_tree.h:1008
void expansion_with_blockers(int max_dim, Blocker block_simplex)
Expands a simplex tree containing only a graph. Simplices corresponding to cliques in the graph are a...
Definition: Simplex_tree.h:1267
boost::iterator_range< Simplex_vertex_iterator > Simplex_vertex_range
Range over the vertices of a simplex.
Definition: Simplex_tree.h:184
void remove_maximal_simplex(Simplex_handle sh)
Remove a maximal simplex.
Definition: Simplex_tree.h:1515
std::pair< Simplex_handle, Simplex_handle > endpoints(Simplex_handle sh)
Definition: Simplex_tree.h:875
void assign_key(Simplex_handle sh, Simplex_key key)
Assign a value 'key' to the key of the simplex represented by the Simplex_handle 'sh'.
Definition: Simplex_tree.h:868
Options::Simplex_key Simplex_key
Key associated to each simplex.
Definition: Simplex_tree.h:90
Simplex_tree()
Constructs an empty simplex tree.
Definition: Simplex_tree.h:330
void maybe_initialize_filtration()
Initializes the filtration cache if it isn't initialized yet.
Definition: Simplex_tree.h:936
boost::iterator_range< Complex_simplex_iterator > Complex_simplex_range
Range over the simplices of the simplicial complex.
Definition: Simplex_tree.h:204
Simplex_tree_boundary_simplex_iterator< Simplex_tree > Boundary_simplex_iterator
Iterator over the simplices of the boundary of a simplex.
Definition: Simplex_tree.h:190
Simplex_tree_siblings< Simplex_tree, Dictionary > Siblings
Set of nodes sharing a same parent in the simplex tree.
Definition: Simplex_tree.h:105
Simplex_handle find(const InputVertexRange &s)
Given a range of Vertex_handles, returns the Simplex_handle of the simplex in the simplicial complex ...
Definition: Simplex_tree.h:641
std::vector< Simplex_handle > Cofaces_simplex_range
Range over the cofaces of a simplex.
Definition: Simplex_tree.h:186
Boundary_opposite_vertex_simplex_range boundary_opposite_vertex_simplex_range(SimplexHandle sh)
Given a simplex, returns a range over the simplices of its boundary and their opposite vertices.
Definition: Simplex_tree.h:320
Simplex_handle edge_with_same_filtration(Simplex_handle sh)
Returns an edge of sh that has the same filtration value as sh if it exists, and null_simplex() other...
Definition: Simplex_tree.h:1657
Simplex_tree_complex_simplex_iterator< Simplex_tree > Complex_simplex_iterator
Iterator over the simplices of the simplicial complex.
Definition: Simplex_tree.h:202
Simplex_handle simplex(Simplex_key idx) const
Returns the simplex that has index idx in the filtration.
Definition: Simplex_tree.h:526
void initialize_filtration()
Initializes the filtration cache, i.e. sorts the simplices according to their order in the filtration...
Definition: Simplex_tree.h:912
Skeleton_simplex_range skeleton_simplex_range(int dim)
Returns a range over the simplices of the dim-skeleton of the simplicial complex.
Definition: Simplex_tree.h:251
boost::transform_iterator< return_first, Dictionary_it > Complex_vertex_iterator
Iterator over the vertices of the simplicial complex.
Definition: Simplex_tree.h:176
std::vector< Simplex_handle > Filtration_simplex_range
Range over the simplices of the simplicial complex, ordered by the filtration.
Definition: Simplex_tree.h:214
Filtration_simplex_range::const_iterator Filtration_simplex_iterator
Iterator over the simplices of the simplicial complex, ordered by the filtration.
Definition: Simplex_tree.h:218
Extended_filtration_data extend_filtration()
Extend filtration for computing extended persistence. This function only uses the filtration values a...
Definition: Simplex_tree.h:1581
Simplex_handle minimal_simplex_with_same_filtration(Simplex_handle sh)
Returns a minimal face of sh that has the same filtration value as sh.
Definition: Simplex_tree.h:1690
Options::Vertex_handle Vertex_handle
Type for the vertex handle.
Definition: Simplex_tree.h:94
std::pair< Filtration_value, Extended_simplex_type > decode_extended_filtration(Filtration_value f, const Extended_filtration_data &efd)
Retrieve the original filtration value for a given simplex in the Simplex_tree. Since the computation...
Definition: Simplex_tree.h:1552
size_t num_vertices() const
Returns the number of vertices in the complex.
Definition: Simplex_tree.h:572
void expansion(int max_dim)
Expands the Simplex_tree containing only its one skeleton until dimension max_dim.
Definition: Simplex_tree.h:1170
Simplex_tree(const Simplex_tree &complex_source)
User-defined copy constructor reproduces the whole tree structure.
Definition: Simplex_tree.h:337
boost::iterator_range< Complex_vertex_iterator > Complex_vertex_range
Range over the vertices of the simplicial complex.
Definition: Simplex_tree.h:178
static Simplex_key null_key()
Returns a fixed number not in the interval [0, num_simplices()).
Definition: Simplex_tree.h:561
Boundary_simplex_range boundary_simplex_range(SimplexHandle sh)
Returns a range over the simplices of the boundary of a simplex.
Definition: Simplex_tree.h:303
int dimension(Simplex_handle sh)
Returns the dimension of a simplex.
Definition: Simplex_tree.h:600
bool prune_above_filtration(Filtration_value filtration)
Prune above filtration value given as parameter.
Definition: Simplex_tree.h:1440
int upper_bound_dimension() const
Returns an upper bound on the dimension of the simplicial complex.
Definition: Simplex_tree.h:611
Siblings * root()
Definition: Simplex_tree.h:891
int dimension()
Returns the dimension of the simplicial complex.
Definition: Simplex_tree.h:619
std::pair< Simplex_handle, bool > insert_simplex_and_subfaces(const InputVertexRange &Nsimplex, Filtration_value filtration=0)
Insert a N-simplex and all his subfaces, from a N-simplex represented by a range of Vertex_handles,...
Definition: Simplex_tree.h:807
size_t num_simplices()
returns the number of simplices in the simplex_tree.
Definition: Simplex_tree.h:578
Simplex_tree_skeleton_simplex_iterator< Simplex_tree > Skeleton_simplex_iterator
Iterator over the simplices of the skeleton of the simplicial complex, for a given dimension.
Definition: Simplex_tree.h:209
Simplex_tree & operator=(Simplex_tree &&complex_source)
User-defined move assignment relocates the whole tree structure.
Definition: Simplex_tree.h:381
boost::iterator_range< Boundary_opposite_vertex_simplex_iterator > Boundary_opposite_vertex_simplex_range
Range over the simplices of the boundary of a simplex and their opposite vertices.
Definition: Simplex_tree.h:198
Simplex_tree & operator=(const Simplex_tree &complex_source)
User-defined copy assignment reproduces the whole tree structure.
Definition: Simplex_tree.h:364
void insert_graph(const OneSkeletonGraph &skel_graph)
Inserts a 1-skeleton in an empty Simplex_tree.
Definition: Simplex_tree.h:1106
void set_dimension(int dimension)
Set a dimension for the simplicial complex.
Definition: Simplex_tree.h:899
boost::iterator_range< Skeleton_simplex_iterator > Skeleton_simplex_range
Range over the simplices of the skeleton of the simplicial complex, for a given dimension.
Definition: Simplex_tree.h:212
void print_hasse(std::ostream &os)
Write the hasse diagram of the simplicial complex in os.
Definition: Simplex_tree.h:1368
~Simplex_tree()
Destructor; deallocates the whole tree structure.
Definition: Simplex_tree.h:359
static Simplex_handle null_simplex()
Returns a Simplex_handle different from all Simplex_handles associated to the simplices in the simpli...
Definition: Simplex_tree.h:556
Complex_simplex_range complex_simplex_range()
Returns a range over the simplices of the simplicial complex.
Definition: Simplex_tree.h:237
Complex_vertex_range complex_vertex_range()
Returns a range over the vertices of the simplicial complex. The order is increasing according to < o...
Definition: Simplex_tree.h:226
Graph simplicial complex methods.
This file includes common file reader for GUDHI.
bool read_simplex(std::istream &in_, std::vector< Vertex_handle > &simplex, Filtration_value &fil)
Read a face from a file.
Definition: reader_utils.h:158
Value type for a filtration function on a cell complex.
Definition: FiltrationValue.h:20
Node of a simplex tree with filtration value and simplex key.
Definition: Simplex_tree_node_explicit_storage.h:29
Definition: Simplex_tree.h:1797
Tag for a linear ordering of simplices.
Definition: indexing_tag.h:20
Concept describing an indexing scheme (see FilteredComplex) for applying continuous maps to a cell co...
Definition: IndexingTag.h:18
Key type used as simplex identifier.
Definition: SimplexKey.h:15
Concept of the template parameter for the class Gudhi::Simplex_tree<SimplexTreeOptions>.
Definition: SimplexTreeOptions.h:15
Handle type for the vertices of a cell complex.
Definition: VertexHandle.h:15