GIC.h
1 /* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
2  * See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
3  * Author: Mathieu Carriere
4  *
5  * Copyright (C) 2017 Inria
6  *
7  * Modification(s):
8  * - 2019/08 Vincent Rouvreau: Fix issue #10 for CGAL
9  * - YYYY/MM Author: Description of the modification
10  */
11 
12 #ifndef GIC_H_
13 #define GIC_H_
14 
15 #ifdef GUDHI_USE_TBB
16 #include <tbb/parallel_for.h>
17 #include <mutex>
18 #endif
19 
20 #include <gudhi/Debug_utils.h>
22 #include <gudhi/reader_utils.h>
23 #include <gudhi/Simplex_tree.h>
24 #include <gudhi/Rips_complex.h>
25 #include <gudhi/Points_off_io.h>
27 #include <gudhi/Persistent_cohomology.h>
28 #include <gudhi/Bottleneck.h>
29 
30 #include <boost/config.hpp>
31 #include <boost/graph/graph_traits.hpp>
32 #include <boost/graph/adjacency_list.hpp>
33 #include <boost/graph/connected_components.hpp>
34 #include <boost/graph/dijkstra_shortest_paths.hpp>
35 #include <boost/graph/subgraph.hpp>
36 #include <boost/graph/graph_utility.hpp>
37 
38 #include <CGAL/version.h> // for CGAL_VERSION_NR
39 
40 #include <iostream>
41 #include <vector>
42 #include <map>
43 #include <string>
44 #include <limits> // for numeric_limits
45 #include <utility> // for std::pair<>
46 #include <algorithm> // for (std::max)
47 #include <random>
48 #include <cassert>
49 #include <cmath>
50 
51 namespace Gudhi {
52 
53 namespace cover_complex {
54 
58 using Persistence_diagram = std::vector<std::pair<double, double> >;
59 using Graph = boost::subgraph<
60  boost::adjacency_list<boost::setS, boost::vecS, boost::undirectedS, boost::no_property,
61  boost::property<boost::edge_index_t, int, boost::property<boost::edge_weight_t, double> > > >;
62 using Vertex_t = boost::graph_traits<Graph>::vertex_descriptor;
63 using Index_map = boost::property_map<Graph, boost::vertex_index_t>::type;
64 using Weight_map = boost::property_map<Graph, boost::edge_weight_t>::type;
65 
86 template <typename Point>
88  private:
89  bool verbose = false; // whether to display information.
90  std::string type; // Nerve or GIC
91 
92  std::vector<Point> point_cloud; // input point cloud.
93  std::vector<std::vector<double> > distances; // all pairwise distances.
94  int maximal_dim; // maximal dimension of output simplicial complex.
95  int data_dimension; // dimension of input data.
96  int n; // number of points.
97 
98  std::vector<double> func; // function used to compute the output simplicial complex.
99  std::vector<double> func_color; // function used to compute the colors of the nodes of the output simplicial complex.
100  bool functional_cover = false; // whether we use a cover with preimages of a function or not.
101 
102  Graph one_skeleton_OFF; // one-skeleton given by the input OFF file (if it exists).
103  Graph one_skeleton; // one-skeleton used to compute the connected components.
104  std::vector<Vertex_t> vertices; // vertices of one_skeleton.
105 
106  std::vector<std::vector<int> > simplices; // simplices of output simplicial complex.
107  std::vector<int> voronoi_subsamples; // Voronoi germs (in case of Voronoi cover).
108 
109  Persistence_diagram PD;
110  std::vector<double> distribution;
111 
112  std::vector<std::vector<int> >
113  cover; // function associating to each data point the vector of cover elements to which it belongs.
114  std::map<int, std::vector<int> >
115  cover_back; // inverse of cover, in order to get the data points associated to a specific cover element.
116  std::map<int, double> cover_std; // standard function (induced by func) used to compute the extended persistence
117  // diagram of the output simplicial complex.
118  std::map<int, int>
119  cover_fct; // integer-valued function that allows to state if two elements of the cover are consecutive or not.
120  std::map<int, std::pair<int, double> >
121  cover_color; // size and coloring (induced by func_color) of the vertices of the output simplicial complex.
122 
123  int resolution_int = -1;
124  double resolution_double = -1;
125  double gain = -1;
126  double rate_constant = 10; // Constant in the subsampling.
127  double rate_power = 0.001; // Power in the subsampling.
128  int mask = 0; // Ignore nodes containing less than mask points.
129 
130  std::map<int, int> name2id, name2idinv;
131 
132  std::string cover_name;
133  std::string point_cloud_name;
134  std::string color_name;
135 
136  // Remove all edges of a graph.
137  void remove_edges(Graph& G) {
138  boost::graph_traits<Graph>::edge_iterator ei, ei_end;
139  for (boost::tie(ei, ei_end) = boost::edges(G); ei != ei_end; ++ei) boost::remove_edge(*ei, G);
140  }
141 
142  // Find random number in [0,1].
143  double GetUniform() {
144  thread_local std::default_random_engine re;
145  std::uniform_real_distribution<double> Dist(0, 1);
146  return Dist(re);
147  }
148 
149  // Subsample points.
150  void SampleWithoutReplacement(int populationSize, int sampleSize, std::vector<int>& samples) {
151  int t = 0;
152  int m = 0;
153  double u;
154  while (m < sampleSize) {
155  u = GetUniform();
156  if ((populationSize - t) * u >= sampleSize - m) {
157  t++;
158  } else {
159  samples[m] = t;
160  t++;
161  m++;
162  }
163  }
164  }
165 
166  // *******************************************************************************************************************
167  // Utils.
168  // *******************************************************************************************************************
169 
170  public:
176  void set_type(const std::string& t) { type = t; }
177 
178  public:
184  void set_verbose(bool verb = false) { verbose = verb; }
185 
186  public:
194  void set_subsampling(double constant, double power) {
195  rate_constant = constant;
196  rate_power = power;
197  }
198 
199  public:
207  void set_mask(int nodemask) { mask = nodemask; }
208 
209  public:
210 
211 
217  void set_point_cloud_from_range(const std::vector<std::vector<double> > & point_cloud) {
218  n = point_cloud.size(); data_dimension = point_cloud[0].size();
219  point_cloud_name = "matrix"; cover.resize(n);
220  for(int i = 0; i < n; i++){
221  boost::add_vertex(one_skeleton_OFF);
222  vertices.push_back(boost::add_vertex(one_skeleton));
223  }
224  this->point_cloud = point_cloud;
225  }
226 
232  bool read_point_cloud(const std::string& off_file_name) {
233  point_cloud_name = off_file_name;
234  std::ifstream input(off_file_name);
235  std::string line;
236 
237  char comment = '#';
238  while (comment == '#') {
239  std::getline(input, line);
240  if (!line.empty() && !all_of(line.begin(), line.end(), (int (*)(int))isspace))
241  comment = line[line.find_first_not_of(' ')];
242  }
243  if (strcmp((char*)line.c_str(), "nOFF") == 0) {
244  comment = '#';
245  while (comment == '#') {
246  std::getline(input, line);
247  if (!line.empty() && !all_of(line.begin(), line.end(), (int (*)(int))isspace))
248  comment = line[line.find_first_not_of(' ')];
249  }
250  std::stringstream stream(line);
251  stream >> data_dimension;
252  } else {
253  data_dimension = 3;
254  }
255 
256  comment = '#';
257  int numedges, numfaces, i, dim;
258  while (comment == '#') {
259  std::getline(input, line);
260  if (!line.empty() && !all_of(line.begin(), line.end(), (int (*)(int))isspace))
261  comment = line[line.find_first_not_of(' ')];
262  }
263  std::stringstream stream(line);
264  stream >> n;
265  stream >> numfaces;
266  stream >> numedges;
267 
268  i = 0;
269  while (i < n) {
270  std::getline(input, line);
271  if (!line.empty() && line[line.find_first_not_of(' ')] != '#' &&
272  !all_of(line.begin(), line.end(), (int (*)(int))isspace)) {
273  std::stringstream iss(line);
274  std::vector<double> point;
275  point.assign(std::istream_iterator<double>(iss), std::istream_iterator<double>());
276  point_cloud.emplace_back(point.begin(), point.begin() + data_dimension);
277  boost::add_vertex(one_skeleton_OFF);
278  vertices.push_back(boost::add_vertex(one_skeleton));
279  cover.emplace_back();
280  i++;
281  }
282  }
283 
284  i = 0;
285  while (i < numfaces) {
286  std::getline(input, line);
287  if (!line.empty() && line[line.find_first_not_of(' ')] != '#' &&
288  !all_of(line.begin(), line.end(), (int (*)(int))isspace)) {
289  std::vector<int> simplex;
290  std::stringstream iss(line);
291  simplex.assign(std::istream_iterator<int>(iss), std::istream_iterator<int>());
292  dim = simplex[0];
293  for (int j = 1; j <= dim; j++)
294  for (int k = j + 1; k <= dim; k++)
295  boost::add_edge(vertices[simplex[j]], vertices[simplex[k]], one_skeleton_OFF);
296  i++;
297  }
298  }
299 
300  return input.is_open();
301  }
302 
303  // *******************************************************************************************************************
304  // Graphs.
305  // *******************************************************************************************************************
306 
307  public: // Set graph from file.
315  void set_graph_from_file(const std::string& graph_file_name) {
316  remove_edges(one_skeleton);
317  int neighb;
318  std::ifstream input(graph_file_name);
319  std::string line;
320  int source;
321  while (std::getline(input, line)) {
322  std::stringstream stream(line);
323  stream >> source;
324  while (stream >> neighb) boost::add_edge(vertices[source], vertices[neighb], one_skeleton);
325  }
326  }
327 
328  public: // Set graph from OFF file.
333  remove_edges(one_skeleton);
334  if (num_edges(one_skeleton_OFF))
335  one_skeleton = one_skeleton_OFF;
336  else
337  std::cerr << "No triangulation read in OFF file!" << std::endl;
338  }
339 
340  public: // Set graph from Rips complex.
347  template <typename Distance>
348  void set_graph_from_rips(double threshold, Distance distance) {
349  remove_edges(one_skeleton);
350  if (distances.size() == 0) compute_pairwise_distances(distance);
351  for (int i = 0; i < n; i++) {
352  for (int j = i + 1; j < n; j++) {
353  if (distances[i][j] <= threshold) {
354  boost::add_edge(vertices[i], vertices[j], one_skeleton);
355  boost::put(boost::edge_weight, one_skeleton, boost::edge(vertices[i], vertices[j], one_skeleton).first,
356  distances[i][j]);
357  }
358  }
359  }
360  }
361 
362  public:
363  void set_graph_weights() {
364  Index_map index = boost::get(boost::vertex_index, one_skeleton);
365  Weight_map weight = boost::get(boost::edge_weight, one_skeleton);
366  boost::graph_traits<Graph>::edge_iterator ei, ei_end;
367  for (boost::tie(ei, ei_end) = boost::edges(one_skeleton); ei != ei_end; ++ei)
368  boost::put(weight, *ei,
369  distances[index[boost::source(*ei, one_skeleton)]][index[boost::target(*ei, one_skeleton)]]);
370  }
371 
372  public:
378  void set_distances_from_range(const std::vector<std::vector<double> > & distance_matrix) {
379  n = distance_matrix.size(); data_dimension = 0; point_cloud_name = "matrix";
380  cover.resize(n); point_cloud.resize(n);
381  for(int i = 0; i < n; i++){
382  boost::add_vertex(one_skeleton_OFF);
383  vertices.push_back(boost::add_vertex(one_skeleton));
384  }
385  distances = distance_matrix;
386  }
387 
388  public: // Pairwise distances.
391  template <typename Distance>
392  void compute_pairwise_distances(Distance ref_distance) {
393  double d;
394  std::vector<double> zeros(n);
395  for (int i = 0; i < n; i++) distances.push_back(zeros);
396  std::string distance = point_cloud_name + "_dist";
397  std::ifstream input(distance, std::ios::out | std::ios::binary);
398 
399  if (input.good()) {
400  if (verbose) std::clog << "Reading distances..." << std::endl;
401  for (int i = 0; i < n; i++) {
402  for (int j = i; j < n; j++) {
403  input.read((char*)&d, 8);
404  distances[i][j] = d;
405  distances[j][i] = d;
406  }
407  }
408  input.close();
409  } else {
410  if (verbose) std::clog << "Computing distances..." << std::endl;
411  input.close();
412  std::ofstream output(distance, std::ios::out | std::ios::binary);
413  for (int i = 0; i < n; i++) {
414  int state = (int)floor(100 * (i * 1.0 + 1) / n) % 10;
415  if (state == 0 && verbose) std::clog << "\r" << state << "%" << std::flush;
416  for (int j = i; j < n; j++) {
417  double dis = ref_distance(point_cloud[i], point_cloud[j]);
418  distances[i][j] = dis;
419  distances[j][i] = dis;
420  output.write((char*)&dis, 8);
421  }
422  }
423  output.close();
424  if (verbose) std::clog << std::endl;
425  }
426  }
427 
428  public: // Automatic tuning of Rips complex.
438  template <typename Distance>
439  double set_graph_from_automatic_rips(Distance distance, int N = 100) {
440  int m = floor(n / std::exp((1 + rate_power) * std::log(std::log(n) / std::log(rate_constant))));
441  m = (std::min)(m, n - 1);
442  double delta = 0;
443 
444  if (verbose) std::clog << n << " points in R^" << data_dimension << std::endl;
445  if (verbose) std::clog << "Subsampling " << m << " points" << std::endl;
446 
447  if (distances.size() == 0) compute_pairwise_distances(distance);
448 
449  #ifdef GUDHI_USE_TBB
450  std::mutex deltamutex;
451  tbb::parallel_for(0, N, [&](int i){
452  std::vector<int> samples(m);
453  SampleWithoutReplacement(n, m, samples);
454  double hausdorff_dist = 0;
455  for (int j = 0; j < n; j++) {
456  double mj = distances[j][samples[0]];
457  for (int k = 1; k < m; k++) mj = (std::min)(mj, distances[j][samples[k]]);
458  hausdorff_dist = (std::max)(hausdorff_dist, mj);
459  }
460  deltamutex.lock();
461  delta += hausdorff_dist / N;
462  deltamutex.unlock();
463  });
464  #else
465  for (int i = 0; i < N; i++) {
466  std::vector<int> samples(m);
467  SampleWithoutReplacement(n, m, samples);
468  double hausdorff_dist = 0;
469  for (int j = 0; j < n; j++) {
470  double mj = distances[j][samples[0]];
471  for (int k = 1; k < m; k++) mj = (std::min)(mj, distances[j][samples[k]]);
472  hausdorff_dist = (std::max)(hausdorff_dist, mj);
473  }
474  delta += hausdorff_dist / N;
475  }
476  #endif
477 
478  if (verbose) std::clog << "delta = " << delta << std::endl;
479  set_graph_from_rips(delta, distance);
480  return delta;
481  }
482 
483  // *******************************************************************************************************************
484  // Functions.
485  // *******************************************************************************************************************
486 
487  public: // Set function from file.
493  void set_function_from_file(const std::string& func_file_name) {
494  int i = 0;
495  std::ifstream input(func_file_name);
496  std::string line;
497  double f;
498  while (std::getline(input, line)) {
499  std::stringstream stream(line);
500  stream >> f;
501  func.push_back(f);
502  i++;
503  }
504  functional_cover = true;
505  cover_name = func_file_name;
506  }
507 
508  public: // Set function from kth coordinate
515  if(point_cloud[0].size() > 0){
516  for (int i = 0; i < n; i++) func.push_back(point_cloud[i][k]);
517  functional_cover = true;
518  cover_name = "coordinate " + std::to_string(k);
519  }
520  else{
521  std::cerr << "Only pairwise distances provided---cannot access " << k << "th coordinate; returning null vector instead" << std::endl;
522  for (int i = 0; i < n; i++) func.push_back(0.0);
523  functional_cover = true;
524  cover_name = "null";
525  }
526  }
527 
528  public: // Set function from vector.
534  template <class InputRange>
535  void set_function_from_range(InputRange const& function) {
536  for (int i = 0; i < n; i++) func.push_back(function[i]);
537  functional_cover = true;
538  }
539 
540  // *******************************************************************************************************************
541  // Covers.
542  // *******************************************************************************************************************
543 
544  public: // Automatic tuning of resolution.
553  if (!functional_cover) {
554  std::cerr << "Cover needs to come from the preimages of a function." << std::endl;
555  return 0;
556  }
557  if (type != "Nerve" && type != "GIC") {
558  std::cerr << "Type of complex needs to be specified." << std::endl;
559  return 0;
560  }
561 
562  double reso = 0;
563  Index_map index = boost::get(boost::vertex_index, one_skeleton);
564 
565  if (type == "GIC") {
566  boost::graph_traits<Graph>::edge_iterator ei, ei_end;
567  for (boost::tie(ei, ei_end) = boost::edges(one_skeleton); ei != ei_end; ++ei)
568  reso = (std::max)(reso, std::abs(func[index[boost::source(*ei, one_skeleton)]] -
569  func[index[boost::target(*ei, one_skeleton)]]));
570  if (verbose) std::clog << "resolution = " << reso << std::endl;
571  resolution_double = reso;
572  }
573 
574  if (type == "Nerve") {
575  boost::graph_traits<Graph>::edge_iterator ei, ei_end;
576  for (boost::tie(ei, ei_end) = boost::edges(one_skeleton); ei != ei_end; ++ei)
577  reso = (std::max)(reso, std::abs(func[index[boost::source(*ei, one_skeleton)]] -
578  func[index[boost::target(*ei, one_skeleton)]]) /
579  gain);
580  if (verbose) std::clog << "resolution = " << reso << std::endl;
581  resolution_double = reso;
582  }
583 
584  return reso;
585  }
586 
587  public:
593  void set_resolution_with_interval_length(double reso) { resolution_double = reso; }
599  void set_resolution_with_interval_number(int reso) { resolution_int = reso; }
605  void set_gain(double g = 0.3) { gain = g; }
606 
607  public: // Set cover with preimages of function.
612  if (resolution_double == -1 && resolution_int == -1) {
613  std::cerr << "Number and/or length of intervals not specified" << std::endl;
614  return;
615  }
616  if (gain == -1) {
617  std::cerr << "Gain not specified" << std::endl;
618  return;
619  }
620 
621  // Read function values and compute min and max
622  double minf = (std::numeric_limits<float>::max)();
623  double maxf = std::numeric_limits<float>::lowest();
624  for (int i = 0; i < n; i++) {
625  minf = (std::min)(minf, func[i]);
626  maxf = (std::max)(maxf, func[i]);
627  }
628  if (verbose) std::clog << "Min function value = " << minf << " and Max function value = " << maxf << std::endl;
629 
630  // Compute cover of im(f)
631  std::vector<std::pair<double, double> > intervals;
632  int res;
633 
634  if (resolution_double == -1) { // Case we use an integer for the number of intervals.
635  double incr = (maxf - minf) / resolution_int;
636  double x = minf;
637  double alpha = (incr * gain) / (2 - 2 * gain);
638  double y = minf + incr + alpha;
639  std::pair<double, double> interm(x, y);
640  intervals.push_back(interm);
641  for (int i = 1; i < resolution_int - 1; i++) {
642  x = minf + i * incr - alpha;
643  y = minf + (i + 1) * incr + alpha;
644  std::pair<double, double> inter(x, y);
645  intervals.push_back(inter);
646  }
647  x = minf + (resolution_int - 1) * incr - alpha;
648  y = maxf;
649  std::pair<double, double> interM(x, y);
650  intervals.push_back(interM);
651  res = intervals.size();
652  if (verbose) {
653  for (int i = 0; i < res; i++)
654  std::clog << "Interval " << i << " = [" << intervals[i].first << ", " << intervals[i].second << "]"
655  << std::endl;
656  }
657  } else {
658  if (resolution_int == -1) { // Case we use a double for the length of the intervals.
659  double x = minf;
660  double y = x + resolution_double;
661  while (y <= maxf && maxf - (y - gain * resolution_double) >= resolution_double) {
662  std::pair<double, double> inter(x, y);
663  intervals.push_back(inter);
664  x = y - gain * resolution_double;
665  y = x + resolution_double;
666  }
667  std::pair<double, double> interM(x, maxf);
668  intervals.push_back(interM);
669  res = intervals.size();
670  if (verbose) {
671  for (int i = 0; i < res; i++)
672  std::clog << "Interval " << i << " = [" << intervals[i].first << ", " << intervals[i].second << "]"
673  << std::endl;
674  }
675  } else { // Case we use an integer and a double for the length of the intervals.
676  double x = minf;
677  double y = x + resolution_double;
678  int count = 0;
679  while (count < resolution_int && y <= maxf && maxf - (y - gain * resolution_double) >= resolution_double) {
680  std::pair<double, double> inter(x, y);
681  intervals.push_back(inter);
682  count++;
683  x = y - gain * resolution_double;
684  y = x + resolution_double;
685  }
686  res = intervals.size();
687  if (verbose) {
688  for (int i = 0; i < res; i++)
689  std::clog << "Interval " << i << " = [" << intervals[i].first << ", " << intervals[i].second << "]"
690  << std::endl;
691  }
692  }
693  }
694 
695  // Sort points according to function values
696  std::vector<int> points(n);
697  for (int i = 0; i < n; i++) points[i] = i;
698  std::sort(points.begin(), points.end(), [this](int p1, int p2){return (this->func[p1] < this->func[p2]);});
699 
700  int id = 0;
701  int pos = 0;
702  Index_map index = boost::get(boost::vertex_index, one_skeleton); // int maxc = -1;
703  std::map<int, std::vector<int> > preimages;
704  std::map<int, double> funcstd;
705 
706  if (verbose) std::clog << "Computing preimages..." << std::endl;
707  for (int i = 0; i < res; i++) {
708  // Find points in the preimage
709  std::pair<double, double> inter1 = intervals[i];
710  int tmp = pos;
711  double u, v;
712 
713  if (i != res - 1) {
714  if (i != 0) {
715  std::pair<double, double> inter3 = intervals[i - 1];
716  while (func[points[tmp]] < inter3.second && tmp != n) {
717  preimages[i].push_back(points[tmp]);
718  tmp++;
719  }
720  u = inter3.second;
721  } else {
722  u = inter1.first;
723  }
724 
725  std::pair<double, double> inter2 = intervals[i + 1];
726  while (func[points[tmp]] < inter2.first && tmp != n) {
727  preimages[i].push_back(points[tmp]);
728  tmp++;
729  }
730  v = inter2.first;
731  pos = tmp;
732  while (func[points[tmp]] < inter1.second && tmp != n) {
733  preimages[i].push_back(points[tmp]);
734  tmp++;
735  }
736 
737  } else {
738  std::pair<double, double> inter3 = intervals[i - 1];
739  while (func[points[tmp]] < inter3.second && tmp != n) {
740  preimages[i].push_back(points[tmp]);
741  tmp++;
742  }
743  while (tmp != n) {
744  preimages[i].push_back(points[tmp]);
745  tmp++;
746  }
747  u = inter3.second;
748  v = inter1.second;
749  }
750 
751  funcstd[i] = 0.5 * (u + v);
752  }
753 
754  #ifdef GUDHI_USE_TBB
755  if (verbose) std::clog << "Computing connected components (parallelized)..." << std::endl;
756  std::mutex covermutex, idmutex;
757  tbb::parallel_for(0, res, [&](int i){
758  // Compute connected components
759  Graph G = one_skeleton.create_subgraph();
760  int num = preimages[i].size();
761  std::vector<int> component(num);
762  for (int j = 0; j < num; j++) boost::add_vertex(index[vertices[preimages[i][j]]], G);
763  boost::connected_components(G, &component[0]);
764  int max = 0;
765 
766  // For each point in preimage
767  for (int j = 0; j < num; j++) {
768  // Update number of components in preimage
769  if (component[j] > max) max = component[j];
770 
771  // Identify component with Cantor polynomial N^2 -> N
772  int identifier = ((i + component[j])*(i + component[j]) + 3 * i + component[j]) / 2;
773 
774  // Update covers
775  covermutex.lock();
776  cover[preimages[i][j]].push_back(identifier);
777  cover_back[identifier].push_back(preimages[i][j]);
778  cover_fct[identifier] = i;
779  cover_std[identifier] = funcstd[i];
780  cover_color[identifier].second += func_color[preimages[i][j]];
781  cover_color[identifier].first += 1;
782  covermutex.unlock();
783  }
784 
785  // Maximal dimension is total number of connected components
786  idmutex.lock();
787  id += max + 1;
788  idmutex.unlock();
789  });
790  #else
791  if (verbose) std::clog << "Computing connected components..." << std::endl;
792  for (int i = 0; i < res; i++) {
793  // Compute connected components
794  Graph G = one_skeleton.create_subgraph();
795  int num = preimages[i].size();
796  std::vector<int> component(num);
797  for (int j = 0; j < num; j++) boost::add_vertex(index[vertices[preimages[i][j]]], G);
798  boost::connected_components(G, &component[0]);
799  int max = 0;
800 
801  // For each point in preimage
802  for (int j = 0; j < num; j++) {
803  // Update number of components in preimage
804  if (component[j] > max) max = component[j];
805 
806  // Identify component with Cantor polynomial N^2 -> N
807  int identifier = (std::pow(i + component[j], 2) + 3 * i + component[j]) / 2;
808 
809  // Update covers
810  cover[preimages[i][j]].push_back(identifier);
811  cover_back[identifier].push_back(preimages[i][j]);
812  cover_fct[identifier] = i;
813  cover_std[identifier] = funcstd[i];
814  cover_color[identifier].second += func_color[preimages[i][j]];
815  cover_color[identifier].first += 1;
816  }
817 
818  // Maximal dimension is total number of connected components
819  id += max + 1;
820  }
821  #endif
822 
823  maximal_dim = id - 1;
824  for (std::map<int, std::pair<int, double> >::iterator iit = cover_color.begin(); iit != cover_color.end(); iit++)
825  iit->second.second /= iit->second.first;
826  }
827 
828  public: // Set cover from file.
835  void set_cover_from_file(const std::string& cover_file_name) {
836  int i = 0;
837  int cov;
838  std::vector<int> cov_elts, cov_number;
839  std::ifstream input(cover_file_name);
840  std::string line;
841  while (std::getline(input, line)) {
842  cov_elts.clear();
843  std::stringstream stream(line);
844  while (stream >> cov) {
845  cov_elts.push_back(cov);
846  cov_number.push_back(cov);
847  cover_fct[cov] = cov;
848  cover_color[cov].second += func_color[i];
849  cover_color[cov].first++;
850  cover_back[cov].push_back(i);
851  }
852  cover[i] = cov_elts;
853  i++;
854  }
855 
856  std::sort(cov_number.begin(), cov_number.end());
857  std::vector<int>::iterator it = std::unique(cov_number.begin(), cov_number.end());
858  cov_number.resize(std::distance(cov_number.begin(), it));
859 
860  maximal_dim = cov_number.size() - 1;
861  for (int i = 0; i <= maximal_dim; i++) cover_color[i].second /= cover_color[i].first;
862  cover_name = cover_file_name;
863  }
864 
865  public: // Set cover from Voronoi
872  template <typename Distance>
873  void set_cover_from_Voronoi(Distance distance, int m = 100) {
874  voronoi_subsamples.resize(m);
875  SampleWithoutReplacement(n, m, voronoi_subsamples);
876  if (distances.size() == 0) compute_pairwise_distances(distance);
877  set_graph_weights();
878  Weight_map weight = boost::get(boost::edge_weight, one_skeleton);
879  Index_map index = boost::get(boost::vertex_index, one_skeleton);
880  std::vector<double> mindist(n);
881  for (int j = 0; j < n; j++) mindist[j] = (std::numeric_limits<double>::max)();
882 
883  // Compute the geodesic distances to subsamples with Dijkstra
884  #ifdef GUDHI_USE_TBB
885  if (verbose) std::clog << "Computing geodesic distances (parallelized)..." << std::endl;
886  std::mutex coverMutex; std::mutex mindistMutex;
887  tbb::parallel_for(0, m, [&](int i){
888  int seed = voronoi_subsamples[i];
889  std::vector<double> dmap(n);
890  boost::dijkstra_shortest_paths(
891  one_skeleton, vertices[seed],
892  boost::weight_map(weight).distance_map(boost::make_iterator_property_map(dmap.begin(), index)));
893 
894  coverMutex.lock(); mindistMutex.lock();
895  for (int j = 0; j < n; j++)
896  if (mindist[j] > dmap[j]) {
897  mindist[j] = dmap[j];
898  if (cover[j].size() == 0)
899  cover[j].push_back(i);
900  else
901  cover[j][0] = i;
902  }
903  coverMutex.unlock(); mindistMutex.unlock();
904  });
905  #else
906  for (int i = 0; i < m; i++) {
907  if (verbose) std::clog << "Computing geodesic distances to seed " << i << "..." << std::endl;
908  int seed = voronoi_subsamples[i];
909  std::vector<double> dmap(n);
910  boost::dijkstra_shortest_paths(
911  one_skeleton, vertices[seed],
912  boost::weight_map(weight).distance_map(boost::make_iterator_property_map(dmap.begin(), index)));
913 
914  for (int j = 0; j < n; j++)
915  if (mindist[j] > dmap[j]) {
916  mindist[j] = dmap[j];
917  if (cover[j].size() == 0)
918  cover[j].push_back(i);
919  else
920  cover[j][0] = i;
921  }
922  }
923  #endif
924 
925  for (int i = 0; i < n; i++) {
926  cover_back[cover[i][0]].push_back(i);
927  cover_color[cover[i][0]].second += func_color[i];
928  cover_color[cover[i][0]].first++;
929  }
930  for (int i = 0; i < m; i++) cover_color[i].second /= cover_color[i].first;
931  maximal_dim = m - 1;
932  cover_name = "Voronoi";
933  }
934 
935  public: // return subset of data corresponding to a node
942  const std::vector<int>& subpopulation(int c) { return cover_back[name2idinv[c]]; }
943 
944  // *******************************************************************************************************************
945  // Visualization.
946  // *******************************************************************************************************************
947 
948  public: // Set color from file.
955  void set_color_from_file(const std::string& color_file_name) {
956  int i = 0;
957  std::ifstream input(color_file_name);
958  std::string line;
959  double f;
960  while (std::getline(input, line)) {
961  std::stringstream stream(line);
962  stream >> f;
963  func_color.push_back(f);
964  i++;
965  }
966  color_name = color_file_name;
967  }
968 
969  public: // Set color from kth coordinate
975  void set_color_from_coordinate(int k = 0) {
976  if(point_cloud[0].size() > 0){
977  for (int i = 0; i < n; i++) func_color.push_back(point_cloud[i][k]);
978  color_name = "coordinate ";
979  color_name.append(std::to_string(k));
980  }
981  else{
982  std::cerr << "Only pairwise distances provided---cannot access " << k << "th coordinate; returning null vector instead" << std::endl;
983  for (int i = 0; i < n; i++) func.push_back(0.0);
984  functional_cover = true;
985  cover_name = "null";
986  }
987  }
988 
989  public: // Set color from vector.
995  void set_color_from_range(std::vector<double> color) {
996  for (unsigned int i = 0; i < color.size(); i++) func_color.push_back(color[i]);
997  }
998 
999  public: // Create a .dot file that can be compiled with neato to produce a .pdf file.
1004  void plot_DOT() {
1005  std::string mapp = point_cloud_name + "_sc.dot";
1006  std::ofstream graphic(mapp);
1007 
1008  double maxv = std::numeric_limits<double>::lowest();
1009  double minv = (std::numeric_limits<double>::max)();
1010  for (std::map<int, std::pair<int, double> >::iterator iit = cover_color.begin(); iit != cover_color.end(); iit++) {
1011  maxv = (std::max)(maxv, iit->second.second);
1012  minv = (std::min)(minv, iit->second.second);
1013  }
1014 
1015  int k = 0;
1016  std::vector<int> nodes;
1017  nodes.clear();
1018 
1019  graphic << "graph GIC {" << std::endl;
1020  int id = 0;
1021  for (std::map<int, std::pair<int, double> >::iterator iit = cover_color.begin(); iit != cover_color.end(); iit++) {
1022  if (iit->second.first > mask) {
1023  nodes.push_back(iit->first);
1024  name2id[iit->first] = id;
1025  name2idinv[id] = iit->first;
1026  id++;
1027  graphic << name2id[iit->first] << "[shape=circle fontcolor=black color=black label=\"" << name2id[iit->first]
1028  << ":" << iit->second.first << "\" style=filled fillcolor=\""
1029  << (1 - (maxv - iit->second.second) / (maxv - minv)) * 0.6 << ", 1, 1\"]" << std::endl;
1030  k++;
1031  }
1032  }
1033  int ke = 0;
1034  int num_simplices = simplices.size();
1035  for (int i = 0; i < num_simplices; i++)
1036  if (simplices[i].size() == 2) {
1037  if (cover_color[simplices[i][0]].first > mask && cover_color[simplices[i][1]].first > mask) {
1038  graphic << " " << name2id[simplices[i][0]] << " -- " << name2id[simplices[i][1]] << " [weight=15];"
1039  << std::endl;
1040  ke++;
1041  }
1042  }
1043  graphic << "}";
1044  graphic.close();
1045  std::clog << mapp << " file generated. It can be visualized with e.g. neato." << std::endl;
1046  }
1047 
1048  public: // Create a .txt file that can be compiled with KeplerMapper.
1052  void write_info() {
1053  int num_simplices = simplices.size();
1054  int num_edges = 0;
1055  std::string mapp = point_cloud_name + "_sc.txt";
1056  std::ofstream graphic(mapp);
1057 
1058  for (int i = 0; i < num_simplices; i++)
1059  if (simplices[i].size() == 2)
1060  if (cover_color[simplices[i][0]].first > mask && cover_color[simplices[i][1]].first > mask) num_edges++;
1061 
1062  graphic << point_cloud_name << std::endl;
1063  graphic << cover_name << std::endl;
1064  graphic << color_name << std::endl;
1065  graphic << resolution_double << " " << gain << std::endl;
1066  graphic << cover_color.size() << " " << num_edges << std::endl;
1067 
1068  int id = 0;
1069  for (std::map<int, std::pair<int, double> >::iterator iit = cover_color.begin(); iit != cover_color.end(); iit++) {
1070  graphic << id << " " << iit->second.second << " " << iit->second.first << std::endl;
1071  name2id[iit->first] = id;
1072  name2idinv[id] = iit->first;
1073  id++;
1074  }
1075 
1076  for (int i = 0; i < num_simplices; i++)
1077  if (simplices[i].size() == 2)
1078  if (cover_color[simplices[i][0]].first > mask && cover_color[simplices[i][1]].first > mask)
1079  graphic << name2id[simplices[i][0]] << " " << name2id[simplices[i][1]] << std::endl;
1080  graphic.close();
1081  std::clog << mapp
1082  << " generated. It can be visualized with e.g. python KeplerMapperVisuFromTxtFile.py and firefox."
1083  << std::endl;
1084  }
1085 
1086  public: // Create a .off file that can be visualized (e.g. with Geomview).
1091  void plot_OFF() {
1092  assert(cover_name == "Voronoi");
1093 
1094  int m = voronoi_subsamples.size();
1095  int numedges = 0;
1096  int numfaces = 0;
1097  std::vector<std::vector<int> > edges, faces;
1098  int numsimplices = simplices.size();
1099 
1100  std::string mapp = point_cloud_name + "_sc.off";
1101  std::ofstream graphic(mapp);
1102 
1103  graphic << "OFF" << std::endl;
1104  for (int i = 0; i < numsimplices; i++) {
1105  if (simplices[i].size() == 2) {
1106  numedges++;
1107  edges.push_back(simplices[i]);
1108  }
1109  if (simplices[i].size() == 3) {
1110  numfaces++;
1111  faces.push_back(simplices[i]);
1112  }
1113  }
1114  graphic << m << " " << numedges + numfaces << std::endl;
1115  for (int i = 0; i < m; i++) {
1116  if (data_dimension <= 3) {
1117  for (int j = 0; j < data_dimension; j++) graphic << point_cloud[voronoi_subsamples[i]][j] << " ";
1118  for (int j = data_dimension; j < 3; j++) graphic << 0 << " ";
1119  graphic << std::endl;
1120  } else {
1121  for (int j = 0; j < 3; j++) graphic << point_cloud[voronoi_subsamples[i]][j] << " ";
1122  }
1123  }
1124  for (int i = 0; i < numedges; i++) graphic << 2 << " " << edges[i][0] << " " << edges[i][1] << std::endl;
1125  for (int i = 0; i < numfaces; i++)
1126  graphic << 3 << " " << faces[i][0] << " " << faces[i][1] << " " << faces[i][2] << std::endl;
1127  graphic.close();
1128  std::clog << mapp << " generated. It can be visualized with e.g. geomview." << std::endl;
1129  }
1130 
1131  // *******************************************************************************************************************
1132  // Extended Persistence Diagrams.
1133  // *******************************************************************************************************************
1134 
1135  public:
1139  Persistence_diagram compute_PD() {
1140  Simplex_tree st;
1141 
1142  // Compute max and min
1143  double maxf = std::numeric_limits<double>::lowest();
1144  double minf = (std::numeric_limits<double>::max)();
1145  for (std::map<int, double>::iterator it = cover_std.begin(); it != cover_std.end(); it++) {
1146  maxf = (std::max)(maxf, it->second);
1147  minf = (std::min)(minf, it->second);
1148  }
1149 
1150  // Build filtration
1151  for (auto const& simplex : simplices) {
1152  std::vector<int> splx = simplex;
1153  splx.push_back(-2);
1154  st.insert_simplex_and_subfaces(splx, -3);
1155  }
1156 
1157  for (std::map<int, double>::iterator it = cover_std.begin(); it != cover_std.end(); it++) {
1158  int vertex = it->first; float val = it->second;
1159  int vert[] = {vertex}; int edge[] = {vertex, -2};
1160  if(st.find(vert) != st.null_simplex()){
1161  st.assign_filtration(st.find(vert), -2 + (val - minf)/(maxf - minf));
1162  st.assign_filtration(st.find(edge), 2 - (val - minf)/(maxf - minf));
1163  }
1164  }
1166 
1167  // Compute PD
1170 
1171  // Output PD
1172  int max_dim = st.dimension();
1173  for (int i = 0; i < max_dim; i++) {
1174  std::vector<std::pair<double, double> > bars = pcoh.intervals_in_dimension(i);
1175  int num_bars = bars.size(); if(i == 0) num_bars -= 1;
1176  if(verbose) std::clog << num_bars << " interval(s) in dimension " << i << ":" << std::endl;
1177  for (int j = 0; j < num_bars; j++) {
1178  double birth = bars[j].first;
1179  double death = bars[j].second;
1180  if (i == 0 && std::isinf(death)) continue;
1181  if (birth < 0)
1182  birth = minf + (birth + 2) * (maxf - minf);
1183  else
1184  birth = minf + (2 - birth) * (maxf - minf);
1185  if (death < 0)
1186  death = minf + (death + 2) * (maxf - minf);
1187  else
1188  death = minf + (2 - death) * (maxf - minf);
1189  PD.push_back(std::pair<double, double>(birth, death));
1190  if (verbose) std::clog << " [" << birth << ", " << death << "]" << std::endl;
1191  }
1192  }
1193  return PD;
1194  }
1195 
1196  public:
1202  void compute_distribution(unsigned int N = 100) {
1203  unsigned int sz = distribution.size();
1204  if (sz < N) {
1205  for (unsigned int i = 0; i < N - sz; i++) {
1206  if (verbose) std::clog << "Computing " << i << "th bootstrap, bottleneck distance = ";
1207 
1208  Cover_complex Cboot; Cboot.n = this->n; Cboot.data_dimension = this->data_dimension; Cboot.type = this->type; Cboot.functional_cover = true;
1209 
1210  std::vector<int> boot(this->n);
1211  for (int j = 0; j < this->n; j++) {
1212  double u = GetUniform();
1213  int id = std::floor(u * (this->n)); boot[j] = id;
1214  Cboot.point_cloud.push_back(this->point_cloud[id]); Cboot.cover.emplace_back(); Cboot.func.push_back(this->func[id]);
1215  boost::add_vertex(Cboot.one_skeleton_OFF); Cboot.vertices.push_back(boost::add_vertex(Cboot.one_skeleton));
1216  }
1217  Cboot.set_color_from_range(Cboot.func);
1218 
1219  for (int j = 0; j < n; j++) {
1220  std::vector<double> dist(n);
1221  for (int k = 0; k < n; k++) dist[k] = distances[boot[j]][boot[k]];
1222  Cboot.distances.push_back(dist);
1223  }
1224 
1226  Cboot.set_gain();
1227  Cboot.set_automatic_resolution();
1228  Cboot.set_cover_from_function();
1229  Cboot.find_simplices();
1230  Cboot.compute_PD();
1231  double db = Gudhi::persistence_diagram::bottleneck_distance(this->PD, Cboot.PD);
1232  if (verbose) std::clog << db << std::endl;
1233  distribution.push_back(db);
1234  }
1235 
1236  std::sort(distribution.begin(), distribution.end());
1237  }
1238  }
1239 
1240  public:
1247  unsigned int N = distribution.size();
1248  double d = distribution[std::floor(alpha * N)];
1249  if (verbose) std::clog << "Distance corresponding to confidence " << alpha << " is " << d << std::endl;
1250  return d;
1251  }
1252 
1253  public:
1260  unsigned int N = distribution.size();
1261  double level = 1;
1262  for (unsigned int i = 0; i < N; i++)
1263  if (distribution[i] >= d){ level = i * 1.0 / N; break; }
1264  if (verbose) std::clog << "Confidence level of distance " << d << " is " << level << std::endl;
1265  return level;
1266  }
1267 
1268  public:
1273  double compute_p_value() {
1274  double distancemin = (std::numeric_limits<double>::max)(); int N = PD.size();
1275  for (int i = 0; i < N; i++) distancemin = (std::min)(distancemin, 0.5 * std::abs(PD[i].second - PD[i].first));
1276  double p_value = 1 - compute_confidence_level_from_distance(distancemin);
1277  if (verbose) std::clog << "p value = " << p_value << std::endl;
1278  return p_value;
1279  }
1280 
1281  // *******************************************************************************************************************
1282  // Computation of simplices.
1283  // *******************************************************************************************************************
1284 
1285  public:
1291  template <typename SimplicialComplex>
1292  void create_complex(SimplicialComplex& complex) {
1293  unsigned int dimension = 0;
1294  for (auto const& simplex : simplices) {
1295  int numvert = simplex.size();
1296  double filt = std::numeric_limits<double>::lowest();
1297  for (int i = 0; i < numvert; i++) filt = (std::max)(cover_color[simplex[i]].second, filt);
1298  complex.insert_simplex_and_subfaces(simplex, filt);
1299  if (dimension < simplex.size() - 1) dimension = simplex.size() - 1;
1300  }
1301  }
1302 
1303  public:
1307  if (type != "Nerve" && type != "GIC") {
1308  std::cerr << "Type of complex needs to be specified." << std::endl;
1309  return;
1310  }
1311 
1312  if (type == "Nerve") {
1313  for(int i = 0; i < n; i++) simplices.push_back(cover[i]);
1314  std::sort(simplices.begin(), simplices.end());
1315  std::vector<std::vector<int> >::iterator it = std::unique(simplices.begin(), simplices.end());
1316  simplices.resize(std::distance(simplices.begin(), it));
1317  }
1318 
1319  if (type == "GIC") {
1320  Index_map index = boost::get(boost::vertex_index, one_skeleton);
1321 
1322  if (functional_cover) {
1323  // Computes the simplices in the GIC by looking at all the edges of the graph and adding the
1324  // corresponding edges in the GIC if the images of the endpoints belong to consecutive intervals.
1325 
1326  if (gain >= 0.5)
1327  throw std::invalid_argument(
1328  "the output of this function is correct ONLY if the cover is minimal, i.e. the gain is less than 0.5.");
1329 
1330  // Loop on all edges.
1331  boost::graph_traits<Graph>::edge_iterator ei, ei_end;
1332  for (boost::tie(ei, ei_end) = boost::edges(one_skeleton); ei != ei_end; ++ei) {
1333  int nums = cover[index[boost::source(*ei, one_skeleton)]].size();
1334  for (int i = 0; i < nums; i++) {
1335  int vs = cover[index[boost::source(*ei, one_skeleton)]][i];
1336  int numt = cover[index[boost::target(*ei, one_skeleton)]].size();
1337  for (int j = 0; j < numt; j++) {
1338  int vt = cover[index[boost::target(*ei, one_skeleton)]][j];
1339  if (cover_fct[vs] == cover_fct[vt] + 1 || cover_fct[vt] == cover_fct[vs] + 1) {
1340  std::vector<int> edge(2);
1341  edge[0] = (std::min)(vs, vt);
1342  edge[1] = (std::max)(vs, vt);
1343  simplices.push_back(edge);
1344  goto afterLoop;
1345  }
1346  }
1347  }
1348  afterLoop:;
1349  }
1350  std::sort(simplices.begin(), simplices.end());
1351  std::vector<std::vector<int> >::iterator it = std::unique(simplices.begin(), simplices.end());
1352  simplices.resize(std::distance(simplices.begin(), it));
1353 
1354  } else {
1355  // Find edges to keep
1356  Simplex_tree st;
1357  boost::graph_traits<Graph>::edge_iterator ei, ei_end;
1358  for (boost::tie(ei, ei_end) = boost::edges(one_skeleton); ei != ei_end; ++ei)
1359  if (!(cover[index[boost::target(*ei, one_skeleton)]].size() == 1 &&
1360  cover[index[boost::target(*ei, one_skeleton)]] == cover[index[boost::source(*ei, one_skeleton)]])) {
1361  std::vector<int> edge(2);
1362  edge[0] = index[boost::source(*ei, one_skeleton)];
1363  edge[1] = index[boost::target(*ei, one_skeleton)];
1364  st.insert_simplex_and_subfaces(edge);
1365  }
1366 
1367  // st.insert_graph(one_skeleton);
1368 
1369  // Build the Simplex Tree corresponding to the graph
1370  st.expansion(maximal_dim);
1371 
1372  // Find simplices of GIC
1373  simplices.clear();
1374  for (auto simplex : st.complex_simplex_range()) {
1375  if (!st.has_children(simplex)) {
1376  std::vector<int> simplx;
1377  for (auto vertex : st.simplex_vertex_range(simplex)) {
1378  unsigned int sz = cover[vertex].size();
1379  for (unsigned int i = 0; i < sz; i++) {
1380  simplx.push_back(cover[vertex][i]);
1381  }
1382  }
1383  std::sort(simplx.begin(), simplx.end());
1384  std::vector<int>::iterator it = std::unique(simplx.begin(), simplx.end());
1385  simplx.resize(std::distance(simplx.begin(), it));
1386  simplices.push_back(simplx);
1387  }
1388  }
1389  std::sort(simplices.begin(), simplices.end());
1390  std::vector<std::vector<int> >::iterator it = std::unique(simplices.begin(), simplices.end());
1391  simplices.resize(std::distance(simplices.begin(), it));
1392  }
1393  }
1394  }
1395 };
1396 
1397 } // namespace cover_complex
1398 
1399 } // namespace Gudhi
1400 
1401 #endif // GIC_H_
void init_coefficients(int charac)
Initializes the coefficient field.
Definition: Persistent_cohomology.h:156
void plot_DOT()
Creates a .dot file called SC.dot for neato (part of the graphviz package) once the simplicial comple...
Definition: GIC.h:1004
bool read_point_cloud(const std::string &off_file_name)
Reads and stores the input point cloud from .(n)OFF file.
Definition: GIC.h:232
void expansion(int max_dim)
Expands the Simplex_tree containing only its one skeleton until dimension max_dim.
Definition: Simplex_tree.h:1141
void set_mask(int nodemask)
Sets the mask, which is a threshold integer such that nodes in the complex that contain a number of d...
Definition: GIC.h:207
void set_function_from_range(InputRange const &function)
Creates the function f from a vector stored in memory.
Definition: GIC.h:535
void set_graph_from_file(const std::string &graph_file_name)
Creates a graph G from a file containing the edges.
Definition: GIC.h:315
Computes the persistent cohomology of a filtered complex.
Definition: Persistent_cohomology.h:52
const std::vector< int > & subpopulation(int c)
Returns the data subset corresponding to a specific node of the created complex.
Definition: GIC.h:942
Simplex Tree data structure for representing simplicial complexes.
Definition: Simplex_tree.h:75
std::pair< Simplex_handle, bool > insert_simplex_and_subfaces(const InputVertexRange &Nsimplex, Filtration_value filtration=0)
Insert a N-simplex and all his subfaces, from a N-simplex represented by a range of Vertex_handles...
Definition: Simplex_tree.h:781
double compute_distance_from_confidence_level(double alpha)
Computes the bottleneck distance threshold corresponding to a specific confidence level...
Definition: GIC.h:1246
void set_type(const std::string &t)
Specifies whether the type of the output simplicial complex.
Definition: GIC.h:176
void find_simplices()
Computes the simplices of the simplicial complex.
Definition: GIC.h:1306
void write_info()
Creates a .txt file called SC.txt describing the 1-skeleton, which can then be plotted with e...
Definition: GIC.h:1052
static Simplex_handle null_simplex()
Returns a Simplex_handle different from all Simplex_handles associated to the simplices in the simpli...
Definition: Simplex_tree.h:530
Compute the Euclidean distance between two Points given by a range of coordinates. The points are assumed to have the same dimension.
Definition: distance_functions.h:34
void set_function_from_coordinate(int k)
Creates the function f from the k-th coordinate of the point cloud P.
Definition: GIC.h:514
Persistence_diagram compute_PD()
Computes the extended persistence diagram of the complex.
Definition: GIC.h:1139
Definition: SimplicialComplexForAlpha.h:14
Rips complex data structure.
Definition: Rips_complex.h:45
void set_color_from_coordinate(int k=0)
Computes the function used to color the nodes of the simplicial complex from the k-th coordinate...
Definition: GIC.h:975
void create_complex(SimplicialComplex &complex)
Creates the simplicial complex.
Definition: GIC.h:1292
void set_graph_from_OFF()
Creates a graph G from the triangulation given by the input .OFF file.
Definition: GIC.h:332
void set_function_from_file(const std::string &func_file_name)
Creates the function f from a file containing the function values.
Definition: GIC.h:493
void set_subsampling(double constant, double power)
Sets the constants used to subsample the data set. These constants are explained in ...
Definition: GIC.h:194
void set_cover_from_Voronoi(Distance distance, int m=100)
Creates the cover C from the Voronoï cells of a subsampling of the point cloud.
Definition: GIC.h:873
void set_color_from_range(std::vector< double > color)
Computes the function used to color the nodes of the simplicial complex from a vector stored in memor...
Definition: GIC.h:995
void set_verbose(bool verb=false)
Specifies whether the program should display information or not.
Definition: GIC.h:184
bool make_filtration_non_decreasing()
This function ensures that each simplex has a higher filtration value than its faces by increasing th...
Definition: Simplex_tree.h:1357
std::vector< std::pair< Filtration_value, Filtration_value > > intervals_in_dimension(int dimension)
Returns persistence intervals for a given dimension.
Definition: Persistent_cohomology.h:681
double compute_p_value()
Computes the p-value, i.e. the opposite of the confidence level of the largest bottleneck distance pr...
Definition: GIC.h:1273
Simplex_handle find(const InputVertexRange &s)
Given a range of Vertex_handles, returns the Simplex_handle of the simplex in the simplicial complex ...
Definition: Simplex_tree.h:615
Value type for a filtration function on a cell complex.
Definition: FiltrationValue.h:20
Complex_simplex_range complex_simplex_range()
Returns a range over the simplices of the simplicial complex.
Definition: Simplex_tree.h:228
Simplex_vertex_range simplex_vertex_range(Simplex_handle sh) const
Returns a range over the vertices of a simplex.
Definition: Simplex_tree.h:273
void assign_filtration(Simplex_handle sh, Filtration_value fv)
Sets the filtration value of a simplex.
Definition: Simplex_tree.h:520
void set_distances_from_range(const std::vector< std::vector< double > > &distance_matrix)
Reads and stores the distance matrices from vector stored in memory.
Definition: GIC.h:378
Global distance functions.
void set_graph_from_rips(double threshold, Distance distance)
Creates a graph G from a Rips complex.
Definition: GIC.h:348
bool has_children(SimplexHandle sh) const
Returns true if the node in the simplex tree pointed by sh has children.
Definition: Simplex_tree.h:602
void compute_distribution(unsigned int N=100)
Computes bootstrapped distances distribution.
Definition: GIC.h:1202
void plot_OFF()
Creates a .off file called SC.off for 3D visualization, which contains the 2-skeleton of the GIC...
Definition: GIC.h:1091
double bottleneck_distance(const Persistence_diagram1 &diag1, const Persistence_diagram2 &diag2, double e=(std::numeric_limits< double >::min)())
Function to compute the Bottleneck distance between two persistence diagrams.
Definition: Bottleneck.h:112
int dimension(Simplex_handle sh)
Returns the dimension of a simplex.
Definition: Simplex_tree.h:574
double set_graph_from_automatic_rips(Distance distance, int N=100)
Creates a graph G from a Rips complex whose threshold value is automatically tuned with subsampling—...
Definition: GIC.h:439
void set_color_from_file(const std::string &color_file_name)
Computes the function used to color the nodes of the simplicial complex from a file containing the fu...
Definition: GIC.h:955
double compute_confidence_level_from_distance(double d)
Computes the confidence level of a specific bottleneck distance threshold.
Definition: GIC.h:1259
void set_resolution_with_interval_number(int reso)
Sets a number of intervals from a value stored in memory.
Definition: GIC.h:599
void set_resolution_with_interval_length(double reso)
Sets a length of intervals from a value stored in memory.
Definition: GIC.h:593
void set_cover_from_file(const std::string &cover_file_name)
Creates the cover C from a file containing the cover elements of each point (the order has to be the ...
Definition: GIC.h:835
void set_cover_from_function()
Creates a cover C from the preimages of the function f.
Definition: GIC.h:611
Options::Filtration_value Filtration_value
Type for the value of the filtration function.
Definition: Simplex_tree.h:82
void compute_persistent_cohomology(Filtration_value min_interval_length=0)
Compute the persistent homology of the filtered simplicial complex.
Definition: Persistent_cohomology.h:172
Cover complex data structure.
Definition: GIC.h:87
double set_automatic_resolution()
Computes the optimal length of intervals (i.e. the smallest interval length avoiding discretization a...
Definition: GIC.h:552
Graph simplicial complex methods.
This file includes common file reader for GUDHI.
void set_gain(double g=0.3)
Sets a gain from a value stored in memory (default value 0.3).
Definition: GIC.h:605
void set_point_cloud_from_range(const std::vector< std::vector< double > > &point_cloud)
Reads and stores the input point cloud from vector stored in memory.
Definition: GIC.h:217
GUDHI  Version 3.3.0  - C++ library for Topological Data Analysis (TDA) and Higher Dimensional Geometry Understanding.  - Copyright : MIT Generated on Tue Aug 11 2020 11:09:13 for GUDHI by Doxygen 1.8.13