Skeleton_blocker/Skeleton_blocker_link.cpp
/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
* See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
* Author(s): David Salinas
*
* Copyright (C) 2014 Inria
*
* Modification(s):
* - YYYY/MM Author: Description of the modification
*/
#include <gudhi/Skeleton_blocker.h>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <fstream>
#include <sstream>
typedef Complex::Vertex_handle Vertex_handle;
typedef Complex::Root_vertex_handle Root_vertex_handle;
typedef Complex::Simplex Simplex;
int main(int argc, char *argv[]) {
// build a full complex with 4 vertices and 2^4-1 simplices
// Create a complex with four vertices (0,1,2,3)
Complex complex;
// Add a tetrahedron to this complex
Simplex tetrahedron(Vertex_handle(0), Vertex_handle(1), Vertex_handle(2), Vertex_handle(3));
complex.add_simplex(tetrahedron);
std::cout << "complex:" << complex.to_string() << std::endl;
// build the link of vertex 1, eg a triangle {0,2,3}
auto link = complex.link(Vertex_handle(1));
std::cout << "link:" << link.to_string() << std::endl;
// Internally link is a subcomplex of 'complex' and its vertices are stored in a vector.
// They can be accessed via Vertex_handle(x) where x is an index of the vector.
// In that example, link has three vertices and thus it contains only
// Vertex_handle(0),Vertex_handle(1) and Vertex_handle(2) are).
for (int i = 0; i < 5; ++i)
std::cout << "link.contains_vertex(Vertex_handle(" << i << ")):" << link.contains_vertex(Vertex_handle(i)) <<
std::endl;
std::cout << std::endl;
// To access to the initial vertices eg (0,1,2,3,4), Root_vertex_handle must be used.
// For instance, to test if the link contains the vertex that was labeled i:
for (int i = 0; i < 5; ++i)
std::cout << "link.contains_vertex(Root_vertex_handle(" << i << ")):" <<
link.contains_vertex(Root_vertex_handle(i)) << std::endl;
return EXIT_SUCCESS;
}
GUDHI  Version 3.1.1  - C++ library for Topological Data Analysis (TDA) and Higher Dimensional Geometry Understanding.  - Copyright : MIT Generated on Fri Feb 7 2020 16:35:36 for GUDHI by Doxygen 1.8.13