11 #ifndef PERSISTENT_COHOMOLOGY_H_ 12 #define PERSISTENT_COHOMOLOGY_H_ 14 #include <gudhi/Persistent_cohomology/Persistent_cohomology_column.h> 15 #include <gudhi/Persistent_cohomology/Field_Zp.h> 16 #include <gudhi/Simple_object_pool.h> 18 #include <boost/intrusive/set.hpp> 19 #include <boost/pending/disjoint_sets.hpp> 20 #include <boost/intrusive/list.hpp> 36 namespace persistent_cohomology {
51 template<
class FilteredComplex,
class CoefficientField>
71 typedef Persistent_cohomology_column<Simplex_key, Arith_element> Column;
73 typedef typename Column::Cell Cell;
75 typedef boost::intrusive::list<Cell,
76 boost::intrusive::constant_time_size<false>,
77 boost::intrusive::base_hook<base_hook_cam_h> > Hcell;
79 typedef boost::intrusive::set<Column,
80 boost::intrusive::constant_time_size<false> > Cam;
82 typedef std::vector<std::pair<Simplex_key, Arith_element> > A_ds_type;
97 dim_max_(cpx.dimension()),
99 num_simplices_(cpx_->num_simplices()),
100 ds_rank_(num_simplices_),
101 ds_parent_(num_simplices_),
102 ds_repr_(num_simplices_, NULL),
103 dsets_(&ds_rank_[0], &ds_parent_[0]),
108 interval_length_policy(&cpx, 0),
111 if (cpx_->
num_simplices() > std::numeric_limits<Simplex_key>::max()) {
113 throw std::out_of_range(
"The number of simplices is more than Simplex_key type numeric limit.");
115 Simplex_key idx_fil = 0;
119 dsets_.make_set(cpx_->
key(sh));
121 if (persistence_dim_max) {
128 for (
auto & transverse_ref : transverse_idx_) {
130 transverse_ref.second.row_->clear_and_dispose([&](Cell*p){p->~Cell();});
131 delete transverse_ref.second.row_;
136 struct length_interval {
139 min_length_(min_length) {
142 bool operator()(Simplex_handle sh1, Simplex_handle sh2) {
143 return cpx_->filtration(sh2) - cpx_->filtration(sh1) > min_length_;
146 void set_length(Filtration_value new_length) {
147 min_length_ = new_length;
151 Filtration_value min_length_;
157 coeff_field_.init(charac);
161 coeff_field_.init(charac_min, charac_max);
173 interval_length_policy.set_length(min_interval_length);
175 for (
auto sh : cpx_->filtration_simplex_range()) {
176 int dim_simplex = cpx_->dimension(sh);
177 switch (dim_simplex) {
181 update_cohomology_groups_edge(sh);
184 update_cohomology_groups(sh, dim_simplex);
190 for (
auto v_sh : cpx_->skeleton_simplex_range(0)) {
191 key = cpx_->key(v_sh);
193 if (ds_parent_[key] == key
194 && zero_cocycles_.find(key) == zero_cocycles_.end()) {
195 persistent_pairs_.emplace_back(
196 cpx_->simplex(key), cpx_->null_simplex(), coeff_field_.characteristic());
199 for (
auto zero_idx : zero_cocycles_) {
200 persistent_pairs_.emplace_back(
201 cpx_->simplex(zero_idx.second), cpx_->null_simplex(), coeff_field_.characteristic());
204 for (
auto cocycle : transverse_idx_) {
205 persistent_pairs_.emplace_back(
206 cpx_->simplex(cocycle.first), cpx_->null_simplex(), cocycle.second.characteristics_);
215 void update_cohomology_groups_edge(Simplex_handle sigma) {
217 boost::tie(u, v) = cpx_->endpoints(sigma);
219 Simplex_key ku = dsets_.find_set(cpx_->key(u));
220 Simplex_key kv = dsets_.find_set(cpx_->key(v));
226 Simplex_key idx_coc_u, idx_coc_v;
227 auto map_it_u = zero_cocycles_.find(ku);
229 if (map_it_u == zero_cocycles_.end()) {
232 idx_coc_u = map_it_u->second;
235 auto map_it_v = zero_cocycles_.find(kv);
237 if (map_it_v == zero_cocycles_.end()) {
240 idx_coc_v = map_it_v->second;
243 if (cpx_->filtration(cpx_->simplex(idx_coc_u))
244 < cpx_->filtration(cpx_->simplex(idx_coc_v))) {
245 if (interval_length_policy(cpx_->simplex(idx_coc_v), sigma)) {
246 persistent_pairs_.emplace_back(
247 cpx_->simplex(idx_coc_v), sigma, coeff_field_.characteristic());
250 if (kv != idx_coc_v) {
251 zero_cocycles_.erase(map_it_v);
253 if (kv == dsets_.find_set(kv)) {
254 if (ku != idx_coc_u) {
255 zero_cocycles_.erase(map_it_u);
257 zero_cocycles_[kv] = idx_coc_u;
260 if (interval_length_policy(cpx_->simplex(idx_coc_u), sigma)) {
261 persistent_pairs_.emplace_back(
262 cpx_->simplex(idx_coc_u), sigma, coeff_field_.characteristic());
265 if (ku != idx_coc_u) {
266 zero_cocycles_.erase(map_it_u);
268 if (ku == dsets_.find_set(ku)) {
269 if (kv != idx_coc_v) {
270 zero_cocycles_.erase(map_it_v);
272 zero_cocycles_[ku] = idx_coc_v;
275 cpx_->assign_key(sigma, cpx_->null_key());
276 }
else if (dim_max_ > 1) {
277 create_cocycle(sigma, coeff_field_.multiplicative_identity(), coeff_field_.characteristic());
284 void annotation_of_the_boundary(
285 std::map<Simplex_key, Arith_element> & map_a_ds, Simplex_handle sigma,
290 typedef std::pair<Column *, int> annotation_t;
291 #ifdef GUDHI_CAN_USE_CXX11_THREAD_LOCAL 293 #endif // GUDHI_CAN_USE_CXX11_THREAD_LOCAL 294 std::vector<annotation_t> annotations_in_boundary;
295 annotations_in_boundary.clear();
296 int sign = 1 - 2 * (dim_sigma % 2);
301 for (
auto sh : cpx_->boundary_simplex_range(sigma)) {
303 if (key != cpx_->null_key()) {
305 curr_col = ds_repr_[dsets_.find_set(key)];
306 if (curr_col != NULL) {
307 annotations_in_boundary.emplace_back(curr_col, sign);
313 std::sort(annotations_in_boundary.begin(), annotations_in_boundary.end(),
314 [](annotation_t
const& a, annotation_t
const& b) {
return a.first < b.first; });
318 std::pair<typename std::map<Simplex_key, Arith_element>::iterator,
bool> result_insert_a_ds;
320 for (
auto ann_it = annotations_in_boundary.begin(); ann_it != annotations_in_boundary.end(); ) {
321 Column* col = ann_it->first;
322 int mult = ann_it->second;
323 while (++ann_it != annotations_in_boundary.end() && ann_it->first == col) {
324 mult += ann_it->second;
327 if (mult != coeff_field_.additive_identity()) {
328 for (
auto cell_ref : col->col_) {
329 Arith_element w_y = coeff_field_.times(cell_ref.coefficient_, mult);
331 if (w_y != coeff_field_.additive_identity()) {
332 result_insert_a_ds = map_a_ds.insert(std::pair<Simplex_key, Arith_element>(cell_ref.key_, w_y));
333 if (!(result_insert_a_ds.second)) {
334 result_insert_a_ds.first->second = coeff_field_.plus_equal(result_insert_a_ds.first->second, w_y);
335 if (result_insert_a_ds.first->second == coeff_field_.additive_identity()) {
336 map_a_ds.erase(result_insert_a_ds.first);
348 void update_cohomology_groups(Simplex_handle sigma,
int dim_sigma) {
350 std::map<Simplex_key, Arith_element> map_a_ds;
351 annotation_of_the_boundary(map_a_ds, sigma, dim_sigma);
353 if (map_a_ds.empty()) {
354 if (dim_sigma < dim_max_) {
355 create_cocycle(sigma, coeff_field_.multiplicative_identity(),
356 coeff_field_.characteristic());
361 for (
auto map_a_ds_ref : map_a_ds) {
363 std::pair<Simplex_key, Arith_element>(map_a_ds_ref.first,
364 map_a_ds_ref.second));
367 Arith_element inv_x, charac;
368 Arith_element prod = coeff_field_.characteristic();
369 for (
auto a_ds_rit = a_ds.rbegin();
370 (a_ds_rit != a_ds.rend())
371 && (prod != coeff_field_.multiplicative_identity()); ++a_ds_rit) {
372 std::tie(inv_x, charac) = coeff_field_.inverse(a_ds_rit->second, prod);
374 if (inv_x != coeff_field_.additive_identity()) {
375 destroy_cocycle(sigma, a_ds, a_ds_rit->first, inv_x, charac);
379 if (prod != coeff_field_.multiplicative_identity()
380 && dim_sigma < dim_max_) {
381 create_cocycle(sigma, coeff_field_.multiplicative_identity(prod), prod);
393 void create_cocycle(Simplex_handle sigma, Arith_element x,
394 Arith_element charac) {
395 Simplex_key key = cpx_->key(sigma);
397 Column * new_col = column_pool_.construct(key);
398 Cell * new_cell = cell_pool_.construct(key, x, new_col);
399 new_col->col_.push_back(*new_cell);
403 cam_.insert(cam_.end(), *new_col);
405 Hcell * new_hcell =
new Hcell;
406 new_hcell->push_back(*new_cell);
407 transverse_idx_[key] = cocycle(charac, new_hcell);
408 ds_repr_[key] = new_col;
419 void destroy_cocycle(Simplex_handle sigma, A_ds_type
const& a_ds,
420 Simplex_key death_key, Arith_element inv_x,
421 Arith_element charac) {
423 if (interval_length_policy(cpx_->simplex(death_key), sigma)) {
424 persistent_pairs_.emplace_back(cpx_->simplex(death_key)
429 auto death_key_row = transverse_idx_.find(death_key);
430 std::pair<typename Cam::iterator, bool> result_insert_cam;
432 auto row_cell_it = death_key_row->second.row_->begin();
434 while (row_cell_it != death_key_row->second.row_->end()) {
436 Arith_element w = coeff_field_.times_minus(inv_x, row_cell_it->coefficient_);
438 if (w != coeff_field_.additive_identity()) {
439 Column * curr_col = row_cell_it->self_col_;
442 for (
auto& col_cell : curr_col->col_) {
443 col_cell.base_hook_cam_h::unlink();
447 cam_.erase(cam_.iterator_to(*curr_col));
449 plus_equal_column(*curr_col, a_ds, w);
451 if (curr_col->col_.empty()) {
452 ds_repr_[curr_col->class_key_] = NULL;
453 column_pool_.destroy(curr_col);
456 result_insert_cam = cam_.insert(*curr_col);
457 if (result_insert_cam.second) {
458 for (
auto& col_cell : curr_col->col_) {
460 transverse_idx_[col_cell.key_].row_->push_front(col_cell);
464 dsets_.link(curr_col->class_key_,
465 result_insert_cam.first->class_key_);
467 Simplex_key key_tmp = dsets_.find_set(curr_col->class_key_);
468 ds_repr_[key_tmp] = &(*(result_insert_cam.first));
469 result_insert_cam.first->class_key_ = key_tmp;
471 curr_col->col_.clear_and_dispose([&](Cell*p){cell_pool_.destroy(p);});
472 column_pool_.destroy(curr_col);
481 if (charac == coeff_field_.characteristic()) {
482 cpx_->assign_key(sigma, cpx_->null_key());
484 if (death_key_row->second.characteristics_ == charac) {
485 delete death_key_row->second.row_;
486 transverse_idx_.erase(death_key_row);
488 death_key_row->second.characteristics_ /= charac;
495 void plus_equal_column(Column & target, A_ds_type
const& other
497 auto target_it = target.col_.begin();
498 auto other_it = other.begin();
499 while (target_it != target.col_.end() && other_it != other.end()) {
500 if (target_it->key_ < other_it->first) {
503 if (target_it->key_ > other_it->first) {
504 Cell * cell_tmp = cell_pool_.construct(Cell(other_it->first
505 , coeff_field_.additive_identity(), &target));
507 cell_tmp->coefficient_ = coeff_field_.plus_times_equal(cell_tmp->coefficient_, other_it->second, w);
509 target.col_.insert(target_it, *cell_tmp);
514 target_it->coefficient_ = coeff_field_.plus_times_equal(target_it->coefficient_, other_it->second, w);
515 if (target_it->coefficient_ == coeff_field_.additive_identity()) {
516 auto tmp_it = target_it;
519 Cell * tmp_cell_ptr = &(*tmp_it);
520 target.col_.erase(tmp_it);
522 cell_pool_.destroy(tmp_cell_ptr);
530 while (other_it != other.end()) {
531 Cell * cell_tmp = cell_pool_.construct(Cell(other_it->first, coeff_field_.additive_identity(), &target));
532 cell_tmp->coefficient_ = coeff_field_.plus_times_equal(cell_tmp->coefficient_, other_it->second, w);
533 target.col_.insert(target.col_.end(), *cell_tmp);
542 struct cmp_intervals_by_length {
546 bool operator()(
const Persistent_interval & p1,
const Persistent_interval & p2) {
547 return (sc_->filtration(get < 1 > (p1)) - sc_->filtration(get < 0 > (p1))
548 > sc_->filtration(get < 1 > (p2)) - sc_->filtration(get < 0 > (p2)));
565 cmp_intervals_by_length cmp(cpx_);
566 std::sort(std::begin(persistent_pairs_), std::end(persistent_pairs_), cmp);
567 bool has_infinity = std::numeric_limits<Filtration_value>::has_infinity;
568 for (
auto pair : persistent_pairs_) {
570 if (has_infinity && cpx_->filtration(get<1>(pair)) == std::numeric_limits<Filtration_value>::infinity()) {
571 ostream << get<2>(pair) <<
" " << cpx_->dimension(get<0>(pair)) <<
" " 572 << cpx_->filtration(get<0>(pair)) <<
" inf " << std::endl;
574 ostream << get<2>(pair) <<
" " << cpx_->dimension(get<0>(pair)) <<
" " 575 << cpx_->filtration(get<0>(pair)) <<
" " 576 << cpx_->filtration(get<1>(pair)) <<
" " << std::endl;
581 void write_output_diagram(std::string diagram_name) {
582 std::ofstream diagram_out(diagram_name.c_str());
583 cmp_intervals_by_length cmp(cpx_);
584 std::sort(std::begin(persistent_pairs_), std::end(persistent_pairs_), cmp);
585 bool has_infinity = std::numeric_limits<Filtration_value>::has_infinity;
586 for (
auto pair : persistent_pairs_) {
588 if (has_infinity && cpx_->filtration(get<1>(pair)) == std::numeric_limits<Filtration_value>::infinity()) {
589 diagram_out << cpx_->dimension(get<0>(pair)) <<
" " 590 << cpx_->filtration(get<0>(pair)) <<
" inf" << std::endl;
592 diagram_out << cpx_->dimension(get<0>(pair)) <<
" " 593 << cpx_->filtration(get<0>(pair)) <<
" " 594 << cpx_->filtration(get<1>(pair)) << std::endl;
604 int siz = std::max(dim_max_, 0);
608 for (
auto pair : persistent_pairs_) {
610 if (cpx_->null_simplex() == get<1>(pair)) {
612 betti_numbers[cpx_->dimension(get<0>(pair))] += 1;
626 for (
auto pair : persistent_pairs_) {
628 if (cpx_->null_simplex() == get<1>(pair)) {
629 if (cpx_->dimension(get<0>(pair)) == dimension) {
645 int siz = std::max(dim_max_, 0);
648 for (
auto pair : persistent_pairs_) {
652 if (cpx_->filtration(get<0>(pair)) <= from &&
653 (get<1>(pair) == cpx_->null_simplex() || cpx_->filtration(get<1>(pair)) > to)) {
655 betti_numbers[cpx_->dimension(get<0>(pair))] += 1;
670 for (
auto pair : persistent_pairs_) {
674 if (cpx_->filtration(get<0>(pair)) <= from &&
675 (get<1>(pair) == cpx_->null_simplex() || cpx_->filtration(get<1>(pair)) > to)) {
676 if (cpx_->dimension(get<0>(pair)) == dimension) {
689 return persistent_pairs_;
696 std::vector< std::pair< Filtration_value , Filtration_value > >
698 std::vector< std::pair< Filtration_value , Filtration_value > > result;
700 for (
auto && pair : persistent_pairs_) {
701 if (cpx_->dimension(get<0>(pair)) == dimension) {
702 result.emplace_back(cpx_->filtration(get<0>(pair)), cpx_->filtration(get<1>(pair)));
717 cocycle(Arith_element characteristics, Hcell * row)
719 characteristics_(characteristics) {
723 Arith_element characteristics_;
730 size_t num_simplices_;
736 std::vector<int> ds_rank_;
737 std::vector<Simplex_key> ds_parent_;
738 std::vector<Column *> ds_repr_;
739 boost::disjoint_sets<int *, Simplex_key *> dsets_;
745 std::map<Simplex_key, Simplex_key> zero_cocycles_;
747 std::map<Simplex_key, cocycle> transverse_idx_;
749 std::vector<Persistent_interval> persistent_pairs_;
750 length_interval interval_length_policy;
752 Simple_object_pool<Column> column_pool_;
753 Simple_object_pool<Cell> cell_pool_;
760 #endif // PERSISTENT_COHOMOLOGY_H_ FilteredComplex::Simplex_key Simplex_key
Data stored for each simplex.
Definition: Persistent_cohomology.h:57
void init_coefficients(int charac)
Initializes the coefficient field.
Definition: Persistent_cohomology.h:156
unspecified Element
Type of element of the field.
Definition: CoefficientField.h:19
unspecified Simplex_key
Data stored for each simplex.
Definition: FilteredComplex.h:91
int persistent_betti_number(int dimension, Filtration_value from, Filtration_value to) const
Returns the persistent Betti number of the dimension passed by parameter.
Definition: Persistent_cohomology.h:667
void assign_key(Simplex_handle sh, Simplex_key n)
Store a number for a simplex, which can later be retrieved with key(sh).
Computes the persistent cohomology of a filtered complex.
Definition: Persistent_cohomology.h:52
int betti_number(int dimension) const
Returns the Betti number of the dimension passed by parameter.
Definition: Persistent_cohomology.h:623
CoefficientField::Element Arith_element
Type of element of the field.
Definition: Persistent_cohomology.h:63
Definition: SimplicialComplexForAlpha.h:14
const std::vector< Persistent_interval > & get_persistent_pairs() const
Returns a list of persistence birth and death FilteredComplex::Simplex_handle pairs.
Definition: Persistent_cohomology.h:688
Simplex_key key(Simplex_handle sh)
Returns the number stored for a simplex by assign_key.
Persistent_cohomology(FilteredComplex &cpx, bool persistence_dim_max=false)
Initializes the Persistent_cohomology class.
Definition: Persistent_cohomology.h:95
std::vector< std::pair< Filtration_value, Filtration_value > > intervals_in_dimension(int dimension)
Returns persistence intervals for a given dimension.
Definition: Persistent_cohomology.h:697
void output_diagram(std::ostream &ostream=std::cout)
Output the persistence diagram in ostream.
Definition: Persistent_cohomology.h:564
Filtration_simplex_range filtration_simplex_range()
Returns a range over the simplices of the complex in the order of the filtration. ...
void init_coefficients(int charac_min, int charac_max)
Initializes the coefficient field for multi-field persistent homology.
Definition: Persistent_cohomology.h:160
std::tuple< Simplex_handle, Simplex_handle, Arith_element > Persistent_interval
Type for birth and death FilteredComplex::Simplex_handle. The Arith_element field is used for the mul...
Definition: Persistent_cohomology.h:66
size_t num_simplices()
Returns the number of simplices in the complex.
unspecified Simplex_handle
Handle to specify a simplex.
Definition: FilteredComplex.h:19
FilteredComplex::Simplex_handle Simplex_handle
Handle to specify a simplex.
Definition: Persistent_cohomology.h:59
std::vector< int > persistent_betti_numbers(Filtration_value from, Filtration_value to) const
Returns the persistent Betti numbers.
Definition: Persistent_cohomology.h:643
Concept describing the requirements for a class to represent a field of coefficients to compute persi...
Definition: CoefficientField.h:14
std::vector< int > betti_numbers() const
Returns Betti numbers.
Definition: Persistent_cohomology.h:602
FilteredComplex::Filtration_value Filtration_value
Type for the value of the filtration function.
Definition: Persistent_cohomology.h:61
void compute_persistent_cohomology(Filtration_value min_interval_length=0)
Compute the persistent homology of the filtered simplicial complex.
Definition: Persistent_cohomology.h:172
The concept FilteredComplex describes the requirements for a type to implement a filtered cell comple...
Definition: FilteredComplex.h:16
unspecified Filtration_value
Type for the value of the filtration function.
Definition: FilteredComplex.h:23