Bitmap_cubical_complex/Random_bitmap_cubical_complex.cpp
/* This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
* See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
* Author(s): Pawel Dlotko
*
* Copyright (C) 2015 Inria
*
* Modification(s):
* - YYYY/MM Author: Description of the modification
*/
// for persistence algorithm
#include <gudhi/Bitmap_cubical_complex.h>
#include <gudhi/Persistent_cohomology.h>
// standard stuff
#include <iostream>
#include <sstream>
#include <vector>
int main(int argc, char** argv) {
srand(time(0));
std::cout
<< "This program computes persistent homology, by using bitmap_cubical_complex class, of cubical "
<< "complexes. The first parameter of the program is the dimension D of the bitmap. The next D parameters are "
<< "number of top dimensional cubes in each dimension of the bitmap. The program will create random cubical "
<< "complex of that sizes and compute persistent homology of it." << std::endl;
int p = 2;
double min_persistence = 0;
if (argc < 3) {
std::cerr << "Wrong number of parameters, the program will now terminate\n";
return 1;
}
size_t dimensionOfBitmap = (size_t)atoi(argv[1]);
std::vector<unsigned> sizes;
size_t multipliers = 1;
for (size_t dim = 0; dim != dimensionOfBitmap; ++dim) {
unsigned sizeInThisDimension = (unsigned)atoi(argv[2 + dim]);
sizes.push_back(sizeInThisDimension);
multipliers *= sizeInThisDimension;
}
std::vector<double> data;
for (size_t i = 0; i != multipliers; ++i) {
data.push_back(rand() / static_cast<double>(RAND_MAX));
}
Bitmap_cubical_complex b(sizes, data);
// Compute the persistence diagram of the complex
Persistent_cohomology pcoh(b);
pcoh.init_coefficients(p); // initializes the coefficient field for homology
pcoh.compute_persistent_cohomology(min_persistence);
std::stringstream ss;
ss << "randomComplex_persistence";
std::ofstream out(ss.str().c_str());
pcoh.output_diagram(out);
out.close();
return 0;
}
GUDHI  Version 3.1.1  - C++ library for Topological Data Analysis (TDA) and Higher Dimensional Geometry Understanding.  - Copyright : MIT Generated on Fri Feb 7 2020 16:35:35 for GUDHI by Doxygen 1.8.13