12 #ifndef ALPHA_COMPLEX_3D_H_ 13 #define ALPHA_COMPLEX_3D_H_ 15 #include <boost/version.hpp> 16 #include <boost/variant.hpp> 18 #include <gudhi/Debug_utils.h> 19 #include <gudhi/Alpha_complex_options.h> 21 #include <CGAL/Exact_predicates_inexact_constructions_kernel.h> 22 #include <CGAL/Exact_predicates_exact_constructions_kernel.h> 23 #include <CGAL/Delaunay_triangulation_3.h> 24 #include <CGAL/Periodic_3_Delaunay_triangulation_traits_3.h> 25 #include <CGAL/Periodic_3_Delaunay_triangulation_3.h> 26 #include <CGAL/Periodic_3_regular_triangulation_traits_3.h> 27 #include <CGAL/Periodic_3_regular_triangulation_3.h> 28 #include <CGAL/Regular_triangulation_3.h> 29 #include <CGAL/Alpha_shape_3.h> 30 #include <CGAL/Alpha_shape_cell_base_3.h> 31 #include <CGAL/Alpha_shape_vertex_base_3.h> 33 #include <CGAL/Object.h> 34 #include <CGAL/tuple.h> 35 #include <CGAL/iterator.h> 36 #include <CGAL/version.h> 38 #include <Eigen/src/Core/util/Macros.h> 40 #include <boost/container/static_vector.hpp> 44 #include <unordered_map> 48 #include <type_traits> 52 #if CGAL_VERSION_NR < 1041101000 53 # error Alpha_complex_3d is only available for CGAL >= 4.11 56 #if !EIGEN_VERSION_AT_LEAST(3,1,0) 57 # error Alpha_complex_3d is only available for Eigen3 >= 3.1.0 installed with CGAL 62 namespace alpha_complex {
64 #ifdef GUDHI_CAN_USE_CXX11_THREAD_LOCAL 66 #endif // GUDHI_CAN_USE_CXX11_THREAD_LOCAL 67 double RELATIVE_PRECISION_OF_TO_DOUBLE = 0.00001;
74 template <complexity Complexity>
75 struct Value_from_iterator {
76 template <
typename Iterator>
77 static double perform(Iterator it) {
79 return CGAL::to_double(*it);
85 template <
typename Iterator>
86 static double perform(Iterator it) {
87 return CGAL::to_double(it->exact());
126 template <complexity Complexity = complexity::SAFE,
bool Weighted = false,
bool Periodic = false>
141 using Predicates =
typename std::conditional<(Complexity ==
complexity::FAST),
142 CGAL::Exact_predicates_inexact_constructions_kernel,
143 CGAL::Exact_predicates_exact_constructions_kernel>::type;
146 template <
typename Predicates,
bool Weighted_version,
bool Periodic_version>
149 template <
typename Predicates,
bool Is_periodic>
150 struct Kernel_3<Predicates, Is_periodic, false> {
151 using Kernel = Predicates;
154 template <
typename Predicates>
155 struct Kernel_3<Predicates, false, true> {
156 using Kernel = CGAL::Periodic_3_Delaunay_triangulation_traits_3<Predicates>;
158 template <
typename Predicates>
159 struct Kernel_3<Predicates, true, true> {
160 using Kernel = CGAL::Periodic_3_regular_triangulation_traits_3<Predicates>;
163 using Kernel =
typename Kernel_3<Predicates, Weighted, Periodic>::Kernel;
165 using TdsVb =
typename std::conditional<Periodic, CGAL::Periodic_3_triangulation_ds_vertex_base_3<>,
166 CGAL::Triangulation_ds_vertex_base_3<>>::type;
168 using Tvb =
typename std::conditional<Weighted, CGAL::Regular_triangulation_vertex_base_3<Kernel, TdsVb>,
169 CGAL::Triangulation_vertex_base_3<Kernel, TdsVb>>::type;
171 using Vb = CGAL::Alpha_shape_vertex_base_3<Kernel, Tvb>;
173 using TdsCb =
typename std::conditional<Periodic, CGAL::Periodic_3_triangulation_ds_cell_base_3<>,
174 CGAL::Triangulation_ds_cell_base_3<>>::type;
176 using Tcb =
typename std::conditional<Weighted, CGAL::Regular_triangulation_cell_base_3<Kernel, TdsCb>,
177 CGAL::Triangulation_cell_base_3<Kernel, TdsCb>>::type;
179 using Cb = CGAL::Alpha_shape_cell_base_3<Kernel, Tcb>;
180 using Tds = CGAL::Triangulation_data_structure_3<Vb, Cb>;
183 template <
typename Kernel,
typename Tds,
bool Weighted_version,
bool Periodic_version>
184 struct Triangulation_3 {};
186 template <
typename Kernel,
typename Tds>
187 struct Triangulation_3<Kernel, Tds, false, false> {
188 using Dt = CGAL::Delaunay_triangulation_3<Kernel, Tds>;
191 template <
typename Kernel,
typename Tds>
192 struct Triangulation_3<Kernel, Tds, true, false> {
193 using Dt = CGAL::Regular_triangulation_3<Kernel, Tds>;
196 template <
typename Kernel,
typename Tds>
197 struct Triangulation_3<Kernel, Tds, false, true> {
198 using Dt = CGAL::Periodic_3_Delaunay_triangulation_3<Kernel, Tds>;
201 template <
typename Kernel,
typename Tds>
202 struct Triangulation_3<Kernel, Tds, true, true> {
203 using Dt = CGAL::Periodic_3_regular_triangulation_3<Kernel, Tds>;
214 using Dt =
typename Triangulation_3<Kernel, Tds, Weighted, Periodic>::Dt;
226 using FT =
typename Alpha_shape_3::FT;
250 using Weighted_point_3 =
typename Triangulation_3<Kernel, Tds, Weighted, Periodic>::Weighted_point_3;
255 using Point_3 =
typename Alpha_shape_3::Point;
259 CGAL::Dispatch_output_iterator<CGAL::cpp11::tuple<CGAL::Object, FT>,
260 CGAL::cpp11::tuple<std::back_insert_iterator<std::vector<CGAL::Object>>,
261 std::back_insert_iterator<std::vector<FT>>>>;
263 using Cell_handle =
typename Alpha_shape_3::Cell_handle;
264 using Facet =
typename Alpha_shape_3::Facet;
265 using Edge =
typename Alpha_shape_3::Edge;
266 using Alpha_vertex_handle =
typename Alpha_shape_3::Vertex_handle;
267 using Vertex_list = boost::container::static_vector<Alpha_vertex_handle, 4>;
279 template <
typename InputPo
intRange>
281 static_assert(!Periodic,
"This constructor is not available for periodic versions of Alpha_complex_3d");
283 alpha_shape_3_ptr_ = std::unique_ptr<Alpha_shape_3>(
284 new Alpha_shape_3(std::begin(points), std::end(points), 0, Alpha_shape_3::GENERAL));
301 template <
typename InputPo
intRange,
typename WeightRange>
303 static_assert(Weighted,
"This constructor is not available for non-weighted versions of Alpha_complex_3d");
304 static_assert(!Periodic,
"This constructor is not available for periodic versions of Alpha_complex_3d");
305 GUDHI_CHECK((weights.size() == points.size()),
306 std::invalid_argument(
"Points number in range different from weights range number"));
308 std::vector<Weighted_point_3> weighted_points_3;
310 std::size_t index = 0;
311 weighted_points_3.reserve(points.size());
312 while ((index < weights.size()) && (index < points.size())) {
313 weighted_points_3.push_back(
Weighted_point_3(points[index], weights[index]));
317 alpha_shape_3_ptr_ = std::unique_ptr<Alpha_shape_3>(
318 new Alpha_shape_3(std::begin(weighted_points_3), std::end(weighted_points_3), 0, Alpha_shape_3::GENERAL));
341 template <
typename InputPo
intRange>
343 FT z_min,
FT x_max,
FT y_max,
FT z_max) {
344 static_assert(Periodic,
"This constructor is not available for non-periodic versions of Alpha_complex_3d");
347 (x_max - x_min == y_max - y_min) && (x_max - x_min == z_max - z_min) && (z_max - z_min == y_max - y_min),
348 std::invalid_argument(
"The size of the cuboid in every directions is not the same."));
351 Dt pdt(
typename Kernel::Iso_cuboid_3(x_min, y_min, z_min, x_max, y_max, z_max));
353 pdt.insert(std::begin(points), std::end(points),
true);
355 if (!pdt.is_triangulation_in_1_sheet()) {
356 throw std::invalid_argument(
"Unable to construct a triangulation within a single periodic domain.");
358 pdt.convert_to_1_sheeted_covering();
362 alpha_shape_3_ptr_ = std::unique_ptr<Alpha_shape_3>(
new Alpha_shape_3(pdt, 0, Alpha_shape_3::GENERAL));
389 template <
typename InputPo
intRange,
typename WeightRange>
391 FT z_min,
FT x_max,
FT y_max,
FT z_max) {
392 static_assert(Weighted,
"This constructor is not available for non-weighted versions of Alpha_complex_3d");
393 static_assert(Periodic,
"This constructor is not available for non-periodic versions of Alpha_complex_3d");
394 GUDHI_CHECK((weights.size() == points.size()),
395 std::invalid_argument(
"Points number in range different from weights range number"));
398 (x_max - x_min == y_max - y_min) && (x_max - x_min == z_max - z_min) && (z_max - z_min == y_max - y_min),
399 std::invalid_argument(
"The size of the cuboid in every directions is not the same."));
401 std::vector<Weighted_point_3> weighted_points_3;
403 std::size_t index = 0;
404 weighted_points_3.reserve(points.size());
408 FT maximal_possible_weight = 0.015625 * (x_max - x_min) * (x_max - x_min);
411 while ((index < weights.size()) && (index < points.size())) {
412 GUDHI_CHECK((weights[index] < maximal_possible_weight) && (weights[index] >= 0),
413 std::invalid_argument(
"Invalid weight at index " + std::to_string(index + 1) +
414 ". Must be positive and less than maximal possible weight = 1/64*cuboid length " 415 "squared, which is not an acceptable input."));
416 weighted_points_3.push_back(
Weighted_point_3(points[index], weights[index]));
421 Dt pdt(
typename Kernel::Iso_cuboid_3(x_min, y_min, z_min, x_max, y_max, z_max));
423 pdt.insert(std::begin(weighted_points_3), std::end(weighted_points_3),
true);
425 if (!pdt.is_triangulation_in_1_sheet()) {
426 throw std::invalid_argument(
"Unable to construct a triangulation within a single periodic domain.");
428 pdt.convert_to_1_sheeted_covering();
432 alpha_shape_3_ptr_ = std::unique_ptr<Alpha_shape_3>(
new Alpha_shape_3(pdt, 0, Alpha_shape_3::GENERAL));
452 Filtration_value max_alpha_square = std::numeric_limits<Filtration_value>::infinity()) {
454 std::cerr <<
"Alpha_complex_3d create_complex - complex is not empty\n";
459 using Simplex_tree_vector_vertex = std::vector<Complex_vertex_handle>;
462 std::size_t count_vertices = 0;
463 std::size_t count_edges = 0;
464 std::size_t count_facets = 0;
465 std::size_t count_cells = 0;
466 #endif // DEBUG_TRACES 467 std::vector<CGAL::Object> objects;
468 std::vector<FT> alpha_values;
470 Dispatch dispatcher = CGAL::dispatch_output<CGAL::Object, FT>(std::back_inserter(objects),
471 std::back_inserter(alpha_values));
473 alpha_shape_3_ptr_->filtration_with_alpha_values(dispatcher);
475 std::cout <<
"filtration_with_alpha_values returns : " << objects.size() <<
" objects" << std::endl;
476 #endif // DEBUG_TRACES 478 using Alpha_value_iterator =
typename std::vector<FT>::const_iterator;
479 Alpha_value_iterator alpha_value_iterator = alpha_values.begin();
480 for (
auto object_iterator : objects) {
481 Vertex_list vertex_list;
484 if (
const Cell_handle* cell = CGAL::object_cast<Cell_handle>(&object_iterator)) {
485 for (
auto i = 0; i < 4; i++) {
487 std::cout <<
"from cell[" << i <<
"] - Point coordinates (" << (*cell)->vertex(i)->point() <<
")" 489 #endif // DEBUG_TRACES 490 vertex_list.push_back((*cell)->vertex(i));
494 #endif // DEBUG_TRACES 495 }
else if (
const Facet* facet = CGAL::object_cast<Facet>(&object_iterator)) {
496 for (
auto i = 0; i < 4; i++) {
497 if ((*facet).second != i) {
499 std::cout <<
"from facet=[" << i <<
"] - Point coordinates (" << (*facet).first->vertex(i)->point() <<
")" 501 #endif // DEBUG_TRACES 502 vertex_list.push_back((*facet).first->vertex(i));
507 #endif // DEBUG_TRACES 508 }
else if (
const Edge* edge = CGAL::object_cast<Edge>(&object_iterator)) {
509 for (
auto i : {(*edge).second, (*edge).third}) {
511 std::cout <<
"from edge[" << i <<
"] - Point coordinates (" << (*edge).first->vertex(i)->point() <<
")" 513 #endif // DEBUG_TRACES 514 vertex_list.push_back((*edge).first->vertex(i));
518 #endif // DEBUG_TRACES 519 }
else if (
const Alpha_vertex_handle* vertex = CGAL::object_cast<Alpha_vertex_handle>(&object_iterator)) {
522 std::cout <<
"from vertex - Point coordinates (" << (*vertex)->point() <<
")" << std::endl;
523 #endif // DEBUG_TRACES 524 vertex_list.push_back((*vertex));
527 Simplex_tree_vector_vertex the_simplex;
528 for (
auto the_alpha_shape_vertex : vertex_list) {
529 auto the_map_iterator = map_cgal_simplex_tree.find(the_alpha_shape_vertex);
530 if (the_map_iterator == map_cgal_simplex_tree.end()) {
532 Complex_vertex_handle vertex = map_cgal_simplex_tree.size();
534 std::cout <<
"Point (" << the_alpha_shape_vertex->point() <<
") not found - insert new vertex id " << vertex
536 #endif // DEBUG_TRACES 537 the_simplex.push_back(vertex);
538 map_cgal_simplex_tree.emplace(the_alpha_shape_vertex, vertex);
541 Complex_vertex_handle vertex = the_map_iterator->second;
543 std::cout <<
"Point (" << the_alpha_shape_vertex->point() <<
") found as vertex id " << vertex << std::endl;
544 #endif // DEBUG_TRACES 545 the_simplex.push_back(vertex);
549 Filtration_value filtr = Value_from_iterator<Complexity>::perform(alpha_value_iterator);
552 std::cout <<
"filtration = " << filtr << std::endl;
553 #endif // DEBUG_TRACES 554 complex.
insert_simplex(the_simplex, static_cast<Filtration_value>(filtr));
555 GUDHI_CHECK(alpha_value_iterator != alpha_values.end(),
"CGAL provided more simplices than values");
556 ++alpha_value_iterator;
560 std::cout <<
"vertices \t" << count_vertices << std::endl;
561 std::cout <<
"edges \t\t" << count_edges << std::endl;
562 std::cout <<
"facets \t\t" << count_facets << std::endl;
563 std::cout <<
"cells \t\t" << count_cells << std::endl;
564 #endif // DEBUG_TRACES 581 if (map_cgal_simplex_tree.size() != cgal_vertex_iterator_vector.size()) {
582 cgal_vertex_iterator_vector.resize(map_cgal_simplex_tree.size());
583 for (
auto map_iterator : map_cgal_simplex_tree) {
584 cgal_vertex_iterator_vector[map_iterator.second] = map_iterator.first;
588 auto cgal_vertex_iterator = cgal_vertex_iterator_vector.at(vertex);
589 return cgal_vertex_iterator->point();
594 std::unique_ptr<Alpha_shape_3> alpha_shape_3_ptr_;
597 std::unordered_map<Alpha_vertex_handle, std::size_t> map_cgal_simplex_tree;
599 std::vector<Alpha_vertex_handle> cgal_vertex_iterator_vector;
606 #endif // ALPHA_COMPLEX_3D_H_ bool create_complex(SimplicialComplexForAlpha3d &complex, Filtration_value max_alpha_square=std::numeric_limits< Filtration_value >::infinity())
Inserts all Delaunay triangulation into the simplicial complex. It also computes the filtration value...
Definition: Alpha_complex_3d.h:451
const Point_3 & get_point(std::size_t vertex)
get_point returns the point corresponding to the vertex given as parameter.
Definition: Alpha_complex_3d.h:580
std::size_t num_vertices()
Alpha_complex_3d(const InputPointRange &points, FT x_min, FT y_min, FT z_min, FT x_max, FT y_max, FT z_max)
Alpha_complex constructor from a list of points and an iso-cuboid coordinates.
Definition: Alpha_complex_3d.h:342
Alpha_complex_3d(const InputPointRange &points, WeightRange weights, FT x_min, FT y_min, FT z_min, FT x_max, FT y_max, FT z_max)
Alpha_complex constructor from a list of points, associated weights and an iso-cuboid coordinates...
Definition: Alpha_complex_3d.h:390
Alpha complex data structure for 3d specific case.
Definition: Alpha_complex_3d.h:127
typename Alpha_shape_3::Point Point_3
Alpha_complex_3d::Point_3 type is either a Alpha_complex_3d::Bare_point_3 (Weighted = false) or a Alp...
Definition: Alpha_complex_3d.h:255
Alpha_complex_3d(const InputPointRange &points, WeightRange weights)
Alpha_complex constructor from a list of points and associated weights.
Definition: Alpha_complex_3d.h:302
Definition: SimplicialComplexForAlpha.h:14
typename Triangulation_3< Kernel, Tds, Weighted, Periodic >::Weighted_point_3 Weighted_point_3
Gives public access to the Weighted_point_3 type. A Weighted point can be constructed as follows: ...
Definition: Alpha_complex_3d.h:250
Value type for a filtration function on a cell complex.
Definition: FiltrationValue.h:20
void prune_above_filtration(Filtration_value filtration)
The concept SimplicialComplexForAlpha3d describes the requirements for a type to implement a simplici...
Definition: SimplicialComplexForAlpha3d.h:21
CGAL::Alpha_shape_3< Dt > Alpha_shape_3
The CGAL 3D Alpha Shapes type.
Definition: Alpha_complex_3d.h:222
Alpha_complex_3d(const InputPointRange &points)
Alpha_complex constructor from a list of points.
Definition: Alpha_complex_3d.h:280
void make_filtration_non_decreasing()
unspecified Filtration_value
Definition: SimplicialComplexForAlpha3d.h:25
typename Alpha_shape_3::FT FT
The alpha values type. Must be compatible with double.
Definition: Alpha_complex_3d.h:226
complexity
Alpha complex complexity template parameter possible values.
Definition: Alpha_complex_options.h:23
void insert_simplex(std::vector< Vertex_handle > const &vertex_range, Filtration_value filtration)
Inserts a simplex from a given simplex (represented by a vector of Vertex_handle) in the simplicial c...
unspecified Vertex_handle
Definition: SimplicialComplexForAlpha3d.h:23
typename Kernel::Point_3 Bare_point_3
Gives public access to the Bare_point_3 (bare aka. unweighed) type. Here is a Bare_point_3 constructo...
Definition: Alpha_complex_3d.h:237