#include <gudhi/graph_simplicial_complex.h>
#include <gudhi/Simplex_tree.h>
#include <gudhi/Points_off_io.h>
#include <CGAL/Epick_d.h>
#include <CGAL/Min_sphere_of_spheres_d.h>
#include <CGAL/Min_sphere_of_points_d_traits_d.h>
#include <boost/program_options.hpp>
#include <string>
#include <vector>
#include <limits>   
#include <utility>  
#include <map>
using Siblings = Simplex_tree::Siblings;
using Graph_t = boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS,
                                      boost::property<Gudhi::vertex_filtration_t, Filtration_value>,
                                      boost::property<Gudhi::edge_filtration_t, Filtration_value> >;
using Edge_t = std::pair<Vertex_handle, Vertex_handle>;
using Kernel = CGAL::Epick_d<CGAL::Dimension_tag<3> >;
using Point = Kernel::Point_d;
using Traits = CGAL::Min_sphere_of_points_d_traits_d<Kernel, Filtration_value, 3>;
using Min_sphere = CGAL::Min_sphere_of_spheres_d<Traits>;
class Cech_blocker {
 public:
  bool operator()(Simplex_handle sh) {
    std::vector<Point> points;
#if DEBUG_TRACES
    std::cout << "Cech_blocker on [";
#endif  // DEBUG_TRACES
    for (auto vertex : simplex_tree_.simplex_vertex_range(sh)) {
      points.push_back(point_cloud_[vertex]);
#if DEBUG_TRACES
      std::cout << vertex << ", ";
#endif  // DEBUG_TRACES
    }
    Min_sphere ms(points.begin(), points.end());
#if DEBUG_TRACES
    std::cout << "] - radius = " << radius << " - returns " << (radius > threshold_) << std::endl;
#endif  // DEBUG_TRACES
    simplex_tree_.assign_filtration(sh, radius);
    return (radius > threshold_);
  }
      : simplex_tree_(simplex_tree), threshold_(threshold), point_cloud_(point_cloud) {}
 private:
  std::vector<Point> point_cloud_;
};
template <typename InputPointRange>
Graph_t compute_proximity_graph(InputPointRange& points, 
Filtration_value threshold);
void program_options(
int argc, 
char* argv[], std::string& off_file_points, 
Filtration_value& threshold, 
int& dim_max);
 int main(int argc, char* argv[]) {
  std::string off_file_points;
  int dim_max;
  program_options(argc, argv, off_file_points, threshold, dim_max);
  
  
  Graph_t prox_graph = compute_proximity_graph(off_reader.
get_point_cloud(), threshold);
  
  
  
  
  st.expansion_with_blockers(dim_max, Cech_blocker(st, threshold, off_reader.
get_point_cloud()));
  std::cout << "The complex contains " << st.num_simplices() << " simplices \n";
  std::cout << "   and has dimension " << st.dimension() << " \n";
  
  st.initialize_filtration();
#if DEBUG_TRACES
  std::cout << "********************************************************************\n";
  
  std::cout << "* The complex contains " << st.num_simplices() << " simplices - dimension=" << st.dimension() << "\n";
  std::cout << "* Iterator on Simplices in the filtration, with [filtration value]:\n";
  for (auto f_simplex : st.filtration_simplex_range()) {
    std::cout << "   "
              << "[" << st.filtration(f_simplex) << "] ";
    for (auto vertex : st.simplex_vertex_range(f_simplex)) {
      std::cout << static_cast<int>(vertex) << " ";
    }
    std::cout << std::endl;
  }
#endif  // DEBUG_TRACES
  return 0;
}
void program_options(
int argc, 
char* argv[], std::string& off_file_points, 
Filtration_value& threshold, 
int& dim_max) {
   namespace po = boost::program_options;
  po::options_description hidden("Hidden options");
  hidden.add_options()("input-file", po::value<std::string>(&off_file_points),
                       "Name of an OFF file containing a 3d point set.\n");
  po::options_description visible("Allowed options", 100);
  visible.add_options()("help,h", "produce help message")(
      "max-edge-length,r",
      po::value<Filtration_value>(&threshold)->default_value(std::numeric_limits<Filtration_value>::infinity()),
      "Maximal length of an edge for the Cech complex construction.")(
      "cpx-dimension,d", po::value<int>(&dim_max)->default_value(1),
      "Maximal dimension of the Cech complex we want to compute.");
  po::positional_options_description pos;
  pos.add("input-file", 1);
  po::options_description all;
  all.add(visible).add(hidden);
  po::variables_map vm;
  po::store(po::command_line_parser(argc, argv).options(all).positional(pos).run(), vm);
  po::notify(vm);
  if (vm.count("help") || !vm.count("input-file")) {
    std::cout << std::endl;
    std::cout << "Construct a Cech complex defined on a set of input points.\n \n";
    std::cout << "Usage: " << argv[0] << " [options] input-file" << std::endl << std::endl;
    std::cout << visible << std::endl;
    exit(-1);
  }
}
template <typename InputPointRange>
Graph_t compute_proximity_graph(InputPointRange& points, 
Filtration_value threshold) {
  std::vector<Edge_t> edges;
  std::vector<Filtration_value> edges_fil;
  Kernel k;
  Vertex_handle idx_u, idx_v;
  idx_u = 0;
  for (auto it_u = points.begin(); it_u != points.end(); ++it_u) {
    idx_v = idx_u + 1;
    for (auto it_v = it_u + 1; it_v != points.end(); ++it_v, ++idx_v) {
      fil = k.squared_distance_d_object()(*it_u, *it_v);
      
      fil = std::sqrt(fil) / 2.;
      if (fil <= threshold) {
        edges.emplace_back(idx_u, idx_v);
        edges_fil.push_back(fil);
      }
    }
    ++idx_u;
  }
  Graph_t skel_graph(edges.begin(), edges.end(), edges_fil.begin(),
                     idx_u);  
  auto vertex_prop = boost::get(Gudhi::vertex_filtration_t(), skel_graph);
  boost::graph_traits<Graph_t>::vertex_iterator vi, vi_end;
  for (std::tie(vi, vi_end) = boost::vertices(skel_graph); vi != vi_end; ++vi) {
    boost::put(vertex_prop, *vi, 0.);
  }
  return skel_graph;
}