:orphan:

.. To get rid of WARNING: document isn't included in any toctree

Alpha complex user manual
=========================
Definition
----------

.. include:: alpha_complex_sum.inc

:doc:`AlphaComplex <alpha_complex_ref>` is constructing a :doc:`SimplexTree <simplex_tree_ref>` using
`Delaunay Triangulation  <http://doc.cgal.org/latest/Triangulation/index.html#Chapter_Triangulations>`_
:cite:`cgal:hdj-t-19b` from the `Computational Geometry Algorithms Library <http://www.cgal.org/>`_
:cite:`cgal:eb-19b`.

Remarks
^^^^^^^
* When an :math:`\alpha`-complex is constructed with an infinite value of :math:`\alpha^2`, the complex is a Delaunay
  complex (with special filtration values). The Delaunay complex without filtration values is also available by
  passing :code:`default_filtration_value = True` to :func:`~gudhi.AlphaComplex.create_simplex_tree`.
* For people only interested in the topology of the Alpha complex (for instance persistence), Alpha complex is
  equivalent to the `Čech complex <https://gudhi.inria.fr/doc/latest/group__cech__complex.html>`_ and much smaller if
  you do not bound the radii. `Čech complex <https://gudhi.inria.fr/doc/latest/group__cech__complex.html>`_ can still
  make sense in higher dimension precisely because you can bound the radii.
* Using the default :code:`precision = 'safe'` makes the construction safe.
  If you pass :code:`precision = 'exact'` to :func:`~gudhi.AlphaComplex.__init__`, the filtration values are the exact
  ones converted to float. This can be very slow.
  If you pass :code:`precision = 'safe'` (the default), the filtration values are only
  guaranteed to have a small multiplicative error compared to the exact value.
  A drawback, when computing persistence, is that an empty exact interval [10^12,10^12] may become a
  non-empty approximate interval [10^12,10^12+10^6].
  Using :code:`precision = 'fast'` makes the computations slightly faster, and the combinatorics are still exact, but
  the computation of filtration values can exceptionally be arbitrarily bad. In all cases, we still guarantee that the
  output is a valid filtration (faces have a filtration value no larger than their cofaces).
* For performances reasons, it is advised to use Alpha_complex with `CGAL <installation.html#cgal>`_ :math:`\geq` 5.0.0.
* The vertices in the output simplex tree are not guaranteed to match the order of the input points. One can use
  :func:`~gudhi.AlphaComplex.get_point` to get the initial point back.

Example from points
-------------------

This example builds the alpha-complex from the given points:

.. testcode::

    import gudhi
    alpha_complex = gudhi.AlphaComplex(points=[[1, 1], [7, 0], [4, 6], [9, 6], [0, 14], [2, 19], [9, 17]])

    simplex_tree = alpha_complex.create_simplex_tree()
    result_str = 'Alpha complex is of dimension ' + repr(simplex_tree.dimension()) + ' - ' + \
        repr(simplex_tree.num_simplices()) + ' simplices - ' + \
        repr(simplex_tree.num_vertices()) + ' vertices.'
    print(result_str)
    fmt = '%s -> %.2f'
    for filtered_value in simplex_tree.get_filtration():
        print(fmt % tuple(filtered_value))

The output is:

.. testoutput::

   Alpha complex is of dimension 2 - 25 simplices - 7 vertices.
   [0] -> 0.00
   [1] -> 0.00
   [2] -> 0.00
   [3] -> 0.00
   [4] -> 0.00
   [5] -> 0.00
   [6] -> 0.00
   [2, 3] -> 6.25
   [4, 5] -> 7.25
   [0, 2] -> 8.50
   [0, 1] -> 9.25
   [1, 3] -> 10.00
   [1, 2] -> 11.25
   [1, 2, 3] -> 12.50
   [0, 1, 2] -> 13.00
   [5, 6] -> 13.25
   [2, 4] -> 20.00
   [4, 6] -> 22.74
   [4, 5, 6] -> 22.74
   [3, 6] -> 30.25
   [2, 6] -> 36.50
   [2, 3, 6] -> 36.50
   [2, 4, 6] -> 37.24
   [0, 4] -> 59.71
   [0, 2, 4] -> 59.71


Algorithm
---------

Data structure
^^^^^^^^^^^^^^

In order to build the alpha complex, first, a Simplex tree is built from the cells of a Delaunay Triangulation.
(The filtration value is set to NaN, which stands for unknown value):

.. figure::
    ../../doc/Alpha_complex/alpha_complex_doc.png
    :figclass: align-center
    :alt: Simplex tree structure construction example

    Simplex tree structure construction example

Filtration value computation algorithm
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: vim

    for i : dimension → 0 do
      for all σ of dimension i
        if filtration(σ) is NaN then
          filtration(σ) = α²(σ)
        end if
        for all τ face of σ do // propagate alpha filtration value
          if filtration(τ) is not NaN then
            filtration(τ) = min( filtration(τ), filtration(σ) )
          else
            if τ is not Gabriel for σ then
              filtration(τ) = filtration(σ)
            end if
          end if
        end for
      end for
    end for
    
    make_filtration_non_decreasing()
    prune_above_filtration()


Dimension 2
^^^^^^^^^^^

From the example above, it means the algorithm looks into each triangle ([0,1,2], [0,2,4], [1,2,3], ...),
computes the filtration value of the triangle, and then propagates the filtration value as described
here:

.. figure::
    ../../doc/Alpha_complex/alpha_complex_doc_420.png
    :figclass: align-center
    :alt: Filtration value propagation example

    Filtration value propagation example

Dimension 1
^^^^^^^^^^^

Then, the algorithm looks into each edge ([0,1], [0,2], [1,2], ...),
computes the filtration value of the edge (in this case, propagation will have no effect).

Dimension 0
^^^^^^^^^^^

Finally, the algorithm looks into each vertex ([0], [1], [2], [3], [4], [5] and [6]) and
sets the filtration value (0 in case of a vertex - propagation will have no effect).

Non decreasing filtration values
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

As the squared radii computed by CGAL are an approximation, it might happen that these
:math:`\alpha^2` values do not quite define a proper filtration (i.e. non-decreasing with
respect to inclusion).
We fix that up by calling :func:`~gudhi.SimplexTree.make_filtration_non_decreasing` (cf.
`C++ version <http://gudhi.gforge.inria.fr/doc/latest/index.html>`_).

Prune above given filtration value
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The simplex tree is pruned from the given maximum :math:`\alpha^2` value (cf.
:func:`~gudhi.SimplexTree.prune_above_filtration`). Note that this does not provide any kind
of speed-up, since we always first build the full filtered complex, so it is recommended not to use
:paramref:`~gudhi.AlphaComplex.create_simplex_tree.max_alpha_square`.
In the following example, a threshold of :math:`\alpha^2 = 32.0` is used.


Example from OFF file
^^^^^^^^^^^^^^^^^^^^^

This example builds the alpha complex from 300 random points on a 2-torus.

Then, it computes the persistence diagram and displays it:

.. plot::
   :include-source:

    import matplotlib.pyplot as plt
    import gudhi
    alpha_complex = gudhi.AlphaComplex(off_file=gudhi.__root_source_dir__ + \
        '/data/points/tore3D_300.off')
    simplex_tree = alpha_complex.create_simplex_tree()
    result_str = 'Alpha complex is of dimension ' + repr(simplex_tree.dimension()) + ' - ' + \
        repr(simplex_tree.num_simplices()) + ' simplices - ' + \
        repr(simplex_tree.num_vertices()) + ' vertices.'
    print(result_str)
    diag = simplex_tree.persistence()
    gudhi.plot_persistence_diagram(diag)
    plt.show()