Persistent_cohomology.h
1 /* This file is part of the Gudhi Library. The Gudhi library
2  * (Geometric Understanding in Higher Dimensions) is a generic C++
3  * library for computational topology.
4  *
5  * Author(s): Clément Maria
6  *
7  * Copyright (C) 2014 INRIA Sophia Antipolis-Méditerranée (France)
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program. If not, see <http://www.gnu.org/licenses/>.
21  */
22 
23 #ifndef PERSISTENT_COHOMOLOGY_H_
24 #define PERSISTENT_COHOMOLOGY_H_
25 
26 #include <gudhi/Persistent_cohomology/Persistent_cohomology_column.h>
27 #include <gudhi/Persistent_cohomology/Field_Zp.h>
28 #include <gudhi/Simple_object_pool.h>
29 
30 #include <boost/intrusive/set.hpp>
31 #include <boost/pending/disjoint_sets.hpp>
32 #include <boost/intrusive/list.hpp>
33 
34 #include <map>
35 #include <utility>
36 #include <list>
37 #include <vector>
38 #include <set>
39 #include <fstream> // std::ofstream
40 #include <limits> // for numeric_limits<>
41 #include <tuple>
42 #include <algorithm>
43 #include <string>
44 #include <stdexcept> // for std::out_of_range
45 
46 namespace Gudhi {
47 
48 namespace persistent_cohomology {
49 
62 // TODO(CM): Memory allocation policy: classic, use a mempool, etc.
63 template<class FilteredComplex, class CoefficientField>
65  public:
67  // Data attached to each simplex to interface with a Property Map.
68  typedef typename Complex_ds::Simplex_key Simplex_key;
69  typedef typename Complex_ds::Simplex_handle Simplex_handle;
70  typedef typename Complex_ds::Filtration_value Filtration_value;
71  typedef typename CoefficientField::Element Arith_element;
72  // Compressed Annotation Matrix types:
73  // Column type
74  typedef Persistent_cohomology_column<Simplex_key, Arith_element> Column; // contains 1 set_hook
75  // Cell type
76  typedef typename Column::Cell Cell; // contains 2 list_hooks
77  // Remark: constant_time_size must be false because base_hook_cam_h has auto_unlink link_mode
78  typedef boost::intrusive::list<Cell,
79  boost::intrusive::constant_time_size<false>,
80  boost::intrusive::base_hook<base_hook_cam_h> > Hcell;
81 
82  typedef boost::intrusive::set<Column,
83  boost::intrusive::constant_time_size<false> > Cam;
84  // Sparse column type for the annotation of the boundary of an element.
85  typedef std::vector<std::pair<Simplex_key, Arith_element> > A_ds_type;
86  // Persistent interval type. The Arith_element field is used for the multi-field framework.
87  typedef std::tuple<Simplex_handle, Simplex_handle, Arith_element> Persistent_interval;
88 
95  explicit Persistent_cohomology(Complex_ds& cpx)
96  : cpx_(&cpx),
97  dim_max_(cpx.dimension()), // upper bound on the dimension of the simplices
98  coeff_field_(), // initialize the field coefficient structure.
99  num_simplices_(cpx_->num_simplices()), // num_simplices save to avoid to call thrice the function
100  ds_rank_(num_simplices_), // union-find
101  ds_parent_(num_simplices_), // union-find
102  ds_repr_(num_simplices_, NULL), // union-find -> annotation vectors
103  dsets_(&ds_rank_[0], &ds_parent_[0]), // union-find
104  cam_(), // collection of annotation vectors
105  zero_cocycles_(), // union-find -> Simplex_key of creator for 0-homology
106  transverse_idx_(), // key -> row
107  persistent_pairs_(),
108  interval_length_policy(&cpx, 0),
109  column_pool_(), // memory pools for the CAM
110  cell_pool_() {
111  if (cpx_->num_simplices() > std::numeric_limits<Simplex_key>::max()) {
112  // num_simplices must be strictly lower than the limit, because a value is reserved for null_key.
113  throw std::out_of_range("The number of simplices is more than Simplex_key type numeric limit.");
114  }
115  Simplex_key idx_fil = 0;
116  for (auto sh : cpx_->filtration_simplex_range()) {
117  cpx_->assign_key(sh, idx_fil);
118  ++idx_fil;
119  dsets_.make_set(cpx_->key(sh));
120  }
121  }
122 
131  Persistent_cohomology(Complex_ds& cpx, bool persistence_dim_max)
132  : Persistent_cohomology(cpx) {
133  if (persistence_dim_max) {
134  ++dim_max_;
135  }
136  }
137 
139  // Clean the transversal lists
140  for (auto & transverse_ref : transverse_idx_) {
141  // Destruct all the cells
142  transverse_ref.second.row_->clear_and_dispose([&](Cell*p){p->~Cell();});
143  delete transverse_ref.second.row_;
144  }
145  }
146 
147  private:
148  struct length_interval {
149  length_interval(Complex_ds * cpx, Filtration_value min_length)
150  : cpx_(cpx),
151  min_length_(min_length) {
152  }
153 
154  bool operator()(Simplex_handle sh1, Simplex_handle sh2) {
155  return cpx_->filtration(sh2) - cpx_->filtration(sh1) > min_length_;
156  }
157 
158  void set_length(Filtration_value new_length) {
159  min_length_ = new_length;
160  }
161 
162  Complex_ds * cpx_;
163  Filtration_value min_length_;
164  };
165 
166  public:
168  void init_coefficients(int charac) {
169  coeff_field_.init(charac);
170  }
172  void init_coefficients(int charac_min, int charac_max) {
173  coeff_field_.init(charac_min, charac_max);
174  }
175 
184  void compute_persistent_cohomology(Filtration_value min_interval_length = 0) {
185  interval_length_policy.set_length(min_interval_length);
186  // Compute all finite intervals
187  for (auto sh : cpx_->filtration_simplex_range()) {
188  int dim_simplex = cpx_->dimension(sh);
189  switch (dim_simplex) {
190  case 0:
191  break;
192  case 1:
193  update_cohomology_groups_edge(sh);
194  break;
195  default:
196  update_cohomology_groups(sh, dim_simplex);
197  break;
198  }
199  }
200  // Compute infinite intervals of dimension 0
201  Simplex_key key;
202  for (auto v_sh : cpx_->skeleton_simplex_range(0)) { // for all 0-dimensional simplices
203  key = cpx_->key(v_sh);
204 
205  if (ds_parent_[key] == key // root of its tree
206  && zero_cocycles_.find(key) == zero_cocycles_.end()) {
207  persistent_pairs_.emplace_back(
208  cpx_->simplex(key), cpx_->null_simplex(), coeff_field_.characteristic());
209  }
210  }
211  for (auto zero_idx : zero_cocycles_) {
212  persistent_pairs_.emplace_back(
213  cpx_->simplex(zero_idx.second), cpx_->null_simplex(), coeff_field_.characteristic());
214  }
215  // Compute infinite interval of dimension > 0
216  for (auto cocycle : transverse_idx_) {
217  persistent_pairs_.emplace_back(
218  cpx_->simplex(cocycle.first), cpx_->null_simplex(), cocycle.second.characteristics_);
219  }
220  }
221 
222  private:
227  void update_cohomology_groups_edge(Simplex_handle sigma) {
228  Simplex_handle u, v;
229  boost::tie(u, v) = cpx_->endpoints(sigma);
230 
231  Simplex_key ku = dsets_.find_set(cpx_->key(u));
232  Simplex_key kv = dsets_.find_set(cpx_->key(v));
233 
234  if (ku != kv) { // Destroy a connected component
235  dsets_.link(ku, kv);
236  // Keys of the simplices which created the connected components containing
237  // respectively u and v.
238  Simplex_key idx_coc_u, idx_coc_v;
239  auto map_it_u = zero_cocycles_.find(ku);
240  // If the index of the cocycle representing the class is already ku.
241  if (map_it_u == zero_cocycles_.end()) {
242  idx_coc_u = ku;
243  } else {
244  idx_coc_u = map_it_u->second;
245  }
246 
247  auto map_it_v = zero_cocycles_.find(kv);
248  // If the index of the cocycle representing the class is already kv.
249  if (map_it_v == zero_cocycles_.end()) {
250  idx_coc_v = kv;
251  } else {
252  idx_coc_v = map_it_v->second;
253  }
254 
255  if (cpx_->filtration(cpx_->simplex(idx_coc_u))
256  < cpx_->filtration(cpx_->simplex(idx_coc_v))) { // Kill cocycle [idx_coc_v], which is younger.
257  if (interval_length_policy(cpx_->simplex(idx_coc_v), sigma)) {
258  persistent_pairs_.emplace_back(
259  cpx_->simplex(idx_coc_v), sigma, coeff_field_.characteristic());
260  }
261  // Maintain the index of the 0-cocycle alive.
262  if (kv != idx_coc_v) {
263  zero_cocycles_.erase(map_it_v);
264  }
265  if (kv == dsets_.find_set(kv)) {
266  if (ku != idx_coc_u) {
267  zero_cocycles_.erase(map_it_u);
268  }
269  zero_cocycles_[kv] = idx_coc_u;
270  }
271  } else { // Kill cocycle [idx_coc_u], which is younger.
272  if (interval_length_policy(cpx_->simplex(idx_coc_u), sigma)) {
273  persistent_pairs_.emplace_back(
274  cpx_->simplex(idx_coc_u), sigma, coeff_field_.characteristic());
275  }
276  // Maintain the index of the 0-cocycle alive.
277  if (ku != idx_coc_u) {
278  zero_cocycles_.erase(map_it_u);
279  }
280  if (ku == dsets_.find_set(ku)) {
281  if (kv != idx_coc_v) {
282  zero_cocycles_.erase(map_it_v);
283  }
284  zero_cocycles_[ku] = idx_coc_v;
285  }
286  }
287  cpx_->assign_key(sigma, cpx_->null_key());
288  } else { // If ku == kv, same connected component: create a 1-cocycle class.
289  create_cocycle(sigma, coeff_field_.multiplicative_identity(), coeff_field_.characteristic());
290  }
291  }
292 
293  /*
294  * Compute the annotation of the boundary of a simplex.
295  */
296  void annotation_of_the_boundary(
297  std::map<Simplex_key, Arith_element> & map_a_ds, Simplex_handle sigma,
298  int dim_sigma) {
299  // traverses the boundary of sigma, keeps track of the annotation vectors,
300  // with multiplicity. We used to sum the coefficients directly in
301  // annotations_in_boundary by using a map, we now do it later.
302  typedef std::pair<Column *, int> annotation_t;
303  thread_local std::vector<annotation_t> annotations_in_boundary;
304  annotations_in_boundary.clear();
305  int sign = 1 - 2 * (dim_sigma % 2); // \in {-1,1} provides the sign in the
306  // alternate sum in the boundary.
307  Simplex_key key;
308  Column * curr_col;
309 
310  for (auto sh : cpx_->boundary_simplex_range(sigma)) {
311  key = cpx_->key(sh);
312  if (key != cpx_->null_key()) { // A simplex with null_key is a killer, and have null annotation
313  // Find its annotation vector
314  curr_col = ds_repr_[dsets_.find_set(key)];
315  if (curr_col != NULL) { // and insert it in annotations_in_boundary with multyiplicative factor "sign".
316  annotations_in_boundary.emplace_back(curr_col, sign);
317  }
318  }
319  sign = -sign;
320  }
321  // Place identical annotations consecutively so we can easily sum their multiplicities.
322  std::sort(annotations_in_boundary.begin(), annotations_in_boundary.end(),
323  [](annotation_t const& a, annotation_t const& b) { return a.first < b.first; });
324 
325  // Sum the annotations with multiplicity, using a map<key,coeff>
326  // to represent a sparse vector.
327  std::pair<typename std::map<Simplex_key, Arith_element>::iterator, bool> result_insert_a_ds;
328 
329  for (auto ann_it = annotations_in_boundary.begin(); ann_it != annotations_in_boundary.end(); ) {
330  Column* col = ann_it->first;
331  int mult = ann_it->second;
332  while (++ann_it != annotations_in_boundary.end() && ann_it->first == col) {
333  mult += ann_it->second;
334  }
335  // The following test is just a heuristic, it is not required, and it is fine that is misses p == 0.
336  if (mult != coeff_field_.additive_identity()) { // For all columns in the boundary,
337  for (auto cell_ref : col->col_) { // insert every cell in map_a_ds with multiplicity
338  Arith_element w_y = coeff_field_.times(cell_ref.coefficient_, mult); // coefficient * multiplicity
339 
340  if (w_y != coeff_field_.additive_identity()) { // if != 0
341  result_insert_a_ds = map_a_ds.insert(std::pair<Simplex_key, Arith_element>(cell_ref.key_, w_y));
342  if (!(result_insert_a_ds.second)) { // if cell_ref.key_ already a Key in map_a_ds
343  result_insert_a_ds.first->second = coeff_field_.plus_equal(result_insert_a_ds.first->second, w_y);
344  if (result_insert_a_ds.first->second == coeff_field_.additive_identity()) {
345  map_a_ds.erase(result_insert_a_ds.first);
346  }
347  }
348  }
349  }
350  }
351  }
352  }
353 
354  /*
355  * Update the cohomology groups under the insertion of a simplex.
356  */
357  void update_cohomology_groups(Simplex_handle sigma, int dim_sigma) {
358 // Compute the annotation of the boundary of sigma:
359  std::map<Simplex_key, Arith_element> map_a_ds;
360  annotation_of_the_boundary(map_a_ds, sigma, dim_sigma);
361 // Update the cohomology groups:
362  if (map_a_ds.empty()) { // sigma is a creator in all fields represented in coeff_field_
363  if (dim_sigma < dim_max_) {
364  create_cocycle(sigma, coeff_field_.multiplicative_identity(),
365  coeff_field_.characteristic());
366  }
367  } else { // sigma is a destructor in at least a field in coeff_field_
368  // Convert map_a_ds to a vector
369  A_ds_type a_ds; // admits reverse iterators
370  for (auto map_a_ds_ref : map_a_ds) {
371  a_ds.push_back(
372  std::pair<Simplex_key, Arith_element>(map_a_ds_ref.first,
373  map_a_ds_ref.second));
374  }
375 
376  Arith_element inv_x, charac;
377  Arith_element prod = coeff_field_.characteristic(); // Product of characteristic of the fields
378  for (auto a_ds_rit = a_ds.rbegin();
379  (a_ds_rit != a_ds.rend())
380  && (prod != coeff_field_.multiplicative_identity()); ++a_ds_rit) {
381  std::tie(inv_x, charac) = coeff_field_.inverse(a_ds_rit->second, prod);
382 
383  if (inv_x != coeff_field_.additive_identity()) {
384  destroy_cocycle(sigma, a_ds, a_ds_rit->first, inv_x, charac);
385  prod /= charac;
386  }
387  }
388  if (prod != coeff_field_.multiplicative_identity()
389  && dim_sigma < dim_max_) {
390  create_cocycle(sigma, coeff_field_.multiplicative_identity(prod), prod);
391  }
392  }
393  }
394 
395  /* \brief Create a new cocycle class.
396  *
397  * The class is created by the insertion of the simplex sigma.
398  * The methods adds a cocycle, representing the new cocycle class,
399  * to the matrix representing the cohomology groups.
400  * The new cocycle has value 0 on every simplex except on sigma
401  * where it worths 1.*/
402  void create_cocycle(Simplex_handle sigma, Arith_element x,
403  Arith_element charac) {
404  Simplex_key key = cpx_->key(sigma);
405  // Create a column containing only one cell,
406  Column * new_col = column_pool_.construct(key);
407  Cell * new_cell = cell_pool_.construct(key, x, new_col);
408  new_col->col_.push_back(*new_cell);
409  // and insert it in the matrix, in constant time thanks to the hint cam_.end().
410  // Indeed *new_col has the biggest lexicographic value because key is the
411  // biggest key used so far.
412  cam_.insert(cam_.end(), *new_col);
413  // Update the disjoint sets data structure.
414  Hcell * new_hcell = new Hcell;
415  new_hcell->push_back(*new_cell);
416  transverse_idx_[key] = cocycle(charac, new_hcell); // insert the new row
417  ds_repr_[key] = new_col;
418  }
419 
420  /* \brief Destroy a cocycle class.
421  *
422  * The cocycle class is destroyed by the insertion of sigma.
423  * The methods proceeds to a reduction of the matrix representing
424  * the cohomology groups using Gauss pivoting. The reduction zeros-out
425  * the row containing the cell with highest key in
426  * a_ds, the annotation of the boundary of simplex sigma. This key
427  * is "death_key".*/
428  void destroy_cocycle(Simplex_handle sigma, A_ds_type const& a_ds,
429  Simplex_key death_key, Arith_element inv_x,
430  Arith_element charac) {
431  // Create a finite persistent interval for which the interval exists
432  if (interval_length_policy(cpx_->simplex(death_key), sigma)) {
433  persistent_pairs_.emplace_back(cpx_->simplex(death_key) // creator
434  , sigma // destructor
435  , charac); // fields
436  }
437 
438  auto death_key_row = transverse_idx_.find(death_key); // Find the beginning of the row.
439  std::pair<typename Cam::iterator, bool> result_insert_cam;
440 
441  auto row_cell_it = death_key_row->second.row_->begin();
442 
443  while (row_cell_it != death_key_row->second.row_->end()) { // Traverse all cells in
444  // the row at index death_key.
445  Arith_element w = coeff_field_.times_minus(inv_x, row_cell_it->coefficient_);
446 
447  if (w != coeff_field_.additive_identity()) {
448  Column * curr_col = row_cell_it->self_col_;
449  ++row_cell_it;
450  // Disconnect the column from the rows in the CAM.
451  for (auto& col_cell : curr_col->col_) {
452  col_cell.base_hook_cam_h::unlink();
453  }
454 
455  // Remove the column from the CAM before modifying its value
456  cam_.erase(cam_.iterator_to(*curr_col));
457  // Proceed to the reduction of the column
458  plus_equal_column(*curr_col, a_ds, w);
459 
460  if (curr_col->col_.empty()) { // If the column is null
461  ds_repr_[curr_col->class_key_] = NULL;
462  column_pool_.destroy(curr_col); // delete curr_col;
463  } else {
464  // Find whether the column obtained is already in the CAM
465  result_insert_cam = cam_.insert(*curr_col);
466  if (result_insert_cam.second) { // If it was not in the CAM before: insertion has succeeded
467  for (auto& col_cell : curr_col->col_) {
468  // re-establish the row links
469  transverse_idx_[col_cell.key_].row_->push_front(col_cell);
470  }
471  } else { // There is already an identical column in the CAM:
472  // merge two disjoint sets.
473  dsets_.link(curr_col->class_key_,
474  result_insert_cam.first->class_key_);
475 
476  Simplex_key key_tmp = dsets_.find_set(curr_col->class_key_);
477  ds_repr_[key_tmp] = &(*(result_insert_cam.first));
478  result_insert_cam.first->class_key_ = key_tmp;
479  // intrusive containers don't own their elements, we have to release them manually
480  curr_col->col_.clear_and_dispose([&](Cell*p){cell_pool_.destroy(p);});
481  column_pool_.destroy(curr_col); // delete curr_col;
482  }
483  }
484  } else {
485  ++row_cell_it;
486  } // If w == 0, pass.
487  }
488 
489  // Because it is a killer simplex, set the data of sigma to null_key().
490  if (charac == coeff_field_.characteristic()) {
491  cpx_->assign_key(sigma, cpx_->null_key());
492  }
493  if (death_key_row->second.characteristics_ == charac) {
494  delete death_key_row->second.row_;
495  transverse_idx_.erase(death_key_row);
496  } else {
497  death_key_row->second.characteristics_ /= charac;
498  }
499  }
500 
501  /*
502  * Assign: target <- target + w * other.
503  */
504  void plus_equal_column(Column & target, A_ds_type const& other // value_type is pair<Simplex_key,Arith_element>
505  , Arith_element w) {
506  auto target_it = target.col_.begin();
507  auto other_it = other.begin();
508  while (target_it != target.col_.end() && other_it != other.end()) {
509  if (target_it->key_ < other_it->first) {
510  ++target_it;
511  } else {
512  if (target_it->key_ > other_it->first) {
513  Cell * cell_tmp = cell_pool_.construct(Cell(other_it->first // key
514  , coeff_field_.additive_identity(), &target));
515 
516  cell_tmp->coefficient_ = coeff_field_.plus_times_equal(cell_tmp->coefficient_, other_it->second, w);
517 
518  target.col_.insert(target_it, *cell_tmp);
519 
520  ++other_it;
521  } else { // it1->key == it2->key
522  // target_it->coefficient_ <- target_it->coefficient_ + other_it->second * w
523  target_it->coefficient_ = coeff_field_.plus_times_equal(target_it->coefficient_, other_it->second, w);
524  if (target_it->coefficient_ == coeff_field_.additive_identity()) {
525  auto tmp_it = target_it;
526  ++target_it;
527  ++other_it; // iterators remain valid
528  Cell * tmp_cell_ptr = &(*tmp_it);
529  target.col_.erase(tmp_it); // removed from column
530 
531  cell_pool_.destroy(tmp_cell_ptr); // delete from memory
532  } else {
533  ++target_it;
534  ++other_it;
535  }
536  }
537  }
538  }
539  while (other_it != other.end()) {
540  Cell * cell_tmp = cell_pool_.construct(Cell(other_it->first, coeff_field_.additive_identity(), &target));
541  cell_tmp->coefficient_ = coeff_field_.plus_times_equal(cell_tmp->coefficient_, other_it->second, w);
542  target.col_.insert(target.col_.end(), *cell_tmp);
543 
544  ++other_it;
545  }
546  }
547 
548  /*
549  * Compare two intervals by length.
550  */
551  struct cmp_intervals_by_length {
552  explicit cmp_intervals_by_length(Complex_ds * sc)
553  : sc_(sc) {
554  }
555  bool operator()(const Persistent_interval & p1, const Persistent_interval & p2) {
556  return (sc_->filtration(get < 1 > (p1)) - sc_->filtration(get < 0 > (p1))
557  > sc_->filtration(get < 1 > (p2)) - sc_->filtration(get < 0 > (p2)));
558  }
559  Complex_ds * sc_;
560  };
561 
562  public:
573  void output_diagram(std::ostream& ostream = std::cout) {
574  cmp_intervals_by_length cmp(cpx_);
575  std::sort(std::begin(persistent_pairs_), std::end(persistent_pairs_), cmp);
576  bool has_infinity = std::numeric_limits<Filtration_value>::has_infinity;
577  for (auto pair : persistent_pairs_) {
578  // Special case on windows, inf is "1.#INF" (cf. unitary tests and R package TDA)
579  if (has_infinity && cpx_->filtration(get<1>(pair)) == std::numeric_limits<Filtration_value>::infinity()) {
580  ostream << get<2>(pair) << " " << cpx_->dimension(get<0>(pair)) << " "
581  << cpx_->filtration(get<0>(pair)) << " inf " << std::endl;
582  } else {
583  ostream << get<2>(pair) << " " << cpx_->dimension(get<0>(pair)) << " "
584  << cpx_->filtration(get<0>(pair)) << " "
585  << cpx_->filtration(get<1>(pair)) << " " << std::endl;
586  }
587  }
588  }
589 
590  void write_output_diagram(std::string diagram_name) {
591  std::ofstream diagram_out(diagram_name.c_str());
592  cmp_intervals_by_length cmp(cpx_);
593  std::sort(std::begin(persistent_pairs_), std::end(persistent_pairs_), cmp);
594  bool has_infinity = std::numeric_limits<Filtration_value>::has_infinity;
595  for (auto pair : persistent_pairs_) {
596  // Special case on windows, inf is "1.#INF"
597  if (has_infinity && cpx_->filtration(get<1>(pair)) == std::numeric_limits<Filtration_value>::infinity()) {
598  diagram_out << cpx_->dimension(get<0>(pair)) << " "
599  << cpx_->filtration(get<0>(pair)) << " inf" << std::endl;
600  } else {
601  diagram_out << cpx_->dimension(get<0>(pair)) << " "
602  << cpx_->filtration(get<0>(pair)) << " "
603  << cpx_->filtration(get<1>(pair)) << std::endl;
604  }
605  }
606  }
607 
611  std::vector<int> betti_numbers() const {
612  // Init Betti numbers vector with zeros until Simplicial complex dimension
613  std::vector<int> betti_numbers(dim_max_, 0);
614 
615  for (auto pair : persistent_pairs_) {
616  // Count never ended persistence intervals
617  if (cpx_->null_simplex() == get<1>(pair)) {
618  // Increment corresponding betti number
619  betti_numbers[cpx_->dimension(get<0>(pair))] += 1;
620  }
621  }
622  return betti_numbers;
623  }
624 
630  int betti_number(int dimension) const {
631  int betti_number = 0;
632 
633  for (auto pair : persistent_pairs_) {
634  // Count never ended persistence intervals
635  if (cpx_->null_simplex() == get<1>(pair)) {
636  if (cpx_->dimension(get<0>(pair)) == dimension) {
637  // Increment betti number found
638  ++betti_number;
639  }
640  }
641  }
642  return betti_number;
643  }
644 
650  std::vector<int> persistent_betti_numbers(Filtration_value from, Filtration_value to) const {
651  // Init Betti numbers vector with zeros until Simplicial complex dimension
652  std::vector<int> betti_numbers(dim_max_, 0);
653  for (auto pair : persistent_pairs_) {
654  // Count persistence intervals that covers the given interval
655  // null_simplex test : if the function is called with to=+infinity, we still get something useful. And it will
656  // still work if we change the complex filtration function to reject null simplices.
657  if (cpx_->filtration(get<0>(pair)) <= from &&
658  (get<1>(pair) == cpx_->null_simplex() || cpx_->filtration(get<1>(pair)) > to)) {
659  // Increment corresponding betti number
660  betti_numbers[cpx_->dimension(get<0>(pair))] += 1;
661  }
662  }
663  return betti_numbers;
664  }
665 
672  int persistent_betti_number(int dimension, Filtration_value from, Filtration_value to) const {
673  int betti_number = 0;
674 
675  for (auto pair : persistent_pairs_) {
676  // Count persistence intervals that covers the given interval
677  // null_simplex test : if the function is called with to=+infinity, we still get something useful. And it will
678  // still work if we change the complex filtration function to reject null simplices.
679  if (cpx_->filtration(get<0>(pair)) <= from &&
680  (get<1>(pair) == cpx_->null_simplex() || cpx_->filtration(get<1>(pair)) > to)) {
681  if (cpx_->dimension(get<0>(pair)) == dimension) {
682  // Increment betti number found
683  ++betti_number;
684  }
685  }
686  }
687  return betti_number;
688  }
689 
694  const std::vector<Persistent_interval>& get_persistent_pairs() const {
695  return persistent_pairs_;
696  }
697 
702  std::vector< std::pair< Filtration_value , Filtration_value > >
703  intervals_in_dimension(int dimension) {
704  std::vector< std::pair< Filtration_value , Filtration_value > > result;
705  // auto && pair, to avoid unnecessary copying
706  for (auto && pair : persistent_pairs_) {
707  if (cpx_->dimension(get<0>(pair)) == dimension) {
708  result.emplace_back(cpx_->filtration(get<0>(pair)), cpx_->filtration(get<1>(pair)));
709  }
710  }
711  return result;
712  }
713 
714  private:
715  /*
716  * Structure representing a cocycle.
717  */
718  struct cocycle {
719  cocycle()
720  : row_(nullptr),
721  characteristics_() {
722  }
723  cocycle(Arith_element characteristics, Hcell * row)
724  : row_(row),
725  characteristics_(characteristics) {
726  }
727 
728  Hcell * row_; // points to the corresponding row in the CAM
729  Arith_element characteristics_; // product of field characteristics for which the cocycle exist
730  };
731 
732  public:
733  Complex_ds * cpx_;
734  int dim_max_;
735  CoefficientField coeff_field_;
736  size_t num_simplices_;
737 
738  /* Disjoint sets data structure to link the model of FilteredComplex
739  * with the compressed annotation matrix.
740  * ds_rank_ is a property map Simplex_key -> int, ds_parent_ is a property map
741  * Simplex_key -> simplex_key_t */
742  std::vector<int> ds_rank_;
743  std::vector<Simplex_key> ds_parent_;
744  std::vector<Column *> ds_repr_;
745  boost::disjoint_sets<int *, Simplex_key *> dsets_;
746  /* The compressed annotation matrix fields.*/
747  Cam cam_;
748  /* Dictionary establishing the correspondance between the Simplex_key of
749  * the root vertex in the union-find ds and the Simplex_key of the vertex which
750  * created the connected component as a 0-dimension homology feature.*/
751  std::map<Simplex_key, Simplex_key> zero_cocycles_;
752  /* Key -> row. */
753  std::map<Simplex_key, cocycle> transverse_idx_;
754  /* Persistent intervals. */
755  std::vector<Persistent_interval> persistent_pairs_;
756  length_interval interval_length_policy;
757 
758  Simple_object_pool<Column> column_pool_;
759  Simple_object_pool<Cell> cell_pool_;
760 };
761 
762 } // namespace persistent_cohomology
763 
764 } // namespace Gudhi
765 
766 #endif // PERSISTENT_COHOMOLOGY_H_
std::vector< int > betti_numbers() const
Returns Betti numbers.
Definition: Persistent_cohomology.h:611
void init_coefficients(int charac)
Initializes the coefficient field.
Definition: Persistent_cohomology.h:168
unspecified Element
Type of element of the field.
Definition: CoefficientField.h:31
unspecified Simplex_key
Key associated to each simplex.
Definition: FilteredComplex.h:35
const std::vector< Persistent_interval > & get_persistent_pairs() const
Returns the persistent pairs.
Definition: Persistent_cohomology.h:694
int betti_number(int dimension) const
Returns the Betti number of the dimension passed by parameter.
Definition: Persistent_cohomology.h:630
Computes the persistent cohomology of a filtered complex.
Definition: Persistent_cohomology.h:64
void assign_key(Simplex_handle sh, Simplex_key key)
Assign a key to a simplex.
Persistent_cohomology(Complex_ds &cpx)
Initializes the Persistent_cohomology class.
Definition: Persistent_cohomology.h:95
Definition: SimplicialComplexForAlpha.h:26
Simplex_key key(Simplex_handle sh)
Returns the key associated to a simplex.
std::vector< std::pair< Filtration_value, Filtration_value > > intervals_in_dimension(int dimension)
Returns persistence intervals for a given dimension.
Definition: Persistent_cohomology.h:703
int persistent_betti_number(int dimension, Filtration_value from, Filtration_value to) const
Returns the persistent Betti number of the dimension passed by parameter.
Definition: Persistent_cohomology.h:672
void output_diagram(std::ostream &ostream=std::cout)
Output the persistence diagram in ostream.
Definition: Persistent_cohomology.h:573
Filtration_simplex_range filtration_simplex_range()
Returns a range over the simplices of the complex in the order of the filtration. ...
void init_coefficients(int charac_min, int charac_max)
Initializes the coefficient field for multi-field persistent homology.
Definition: Persistent_cohomology.h:172
size_t num_simplices()
Returns the number of simplices in the complex.
unspecified Simplex_handle
Definition: FilteredComplex.h:31
Persistent_cohomology(Complex_ds &cpx, bool persistence_dim_max)
Initializes the Persistent_cohomology class.
Definition: Persistent_cohomology.h:131
std::vector< int > persistent_betti_numbers(Filtration_value from, Filtration_value to) const
Returns the persistent Betti numbers.
Definition: Persistent_cohomology.h:650
Concept describing the requirements for a class to represent a field of coefficients to compute persi...
Definition: CoefficientField.h:26
void compute_persistent_cohomology(Filtration_value min_interval_length=0)
Compute the persistent homology of the filtered simplicial complex.
Definition: Persistent_cohomology.h:184
The concept FilteredComplex describes the requirements for a type to implement a filtered cell comple...
Definition: FilteredComplex.h:28
unspecified Filtration_value
Type for the value of the filtration function.
Definition: FilteredComplex.h:39
GUDHI  Version 2.0.1  - C++ library for Topological Data Analysis (TDA) and Higher Dimensional Geometry Understanding. Generated on Mon Oct 2 2017 10:20:49 for GUDHI by doxygen 1.8.11